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1. INTRODUCTION 
 
The existence of structural discontinuities (notches) in 
mechanical components induces the appearance of 
localised plastic strains that, combined with cyclic 
loading, can lead to the initiation of fatigue cracks and, 
therefore, to structural collapse. Thus, it is imperative 
to proceed to a precise characterisation of both local 
stress and strain components. This task is usually 
performed using non-linear elastoplastic finite element 
analyses or local strain approach methods, such as 
Neuber’s rule [1] or the Molski-Glinka method [2]. 
Moreover, commercial finite element programs are 
generally limited to kinematic and isotropic hardening 
rules. These rules originate results that are identical for 
monotonic or proportional loading, but can differ 
substantially in situations of non-proportional loading 
or load reversion. In this way, some difficulties may 
arise when using these programs to model elastoplastic 
stress-strain states in notches. On this context, the main 
objectives of this paper are (i) to determine the stress 
concentration factors of five distinct types of notched 
specimens using elastic finite element analyses and (ii) 
to determine, based on finite element and local strain 
approach methods, mean and range values of local 
elastoplastic stress and strain for several nominal 
loadings for some selected notched specimens. In finite 
element analyses, kinematic and isotropic hardening 
rules were used. The existence of plane stress and 
plane stress states at the notch was considered. 
 
 
2. PREDICTION METHODOLOGIES 
 
Local inelastic stresses and strains can be obtained by 
two main methodologies: (i) local strain approach, 
namely by the Neuber’s rule or the Molski-Glinka 
method and (ii) finite element analysis. 
 
 

2.1 Local strain approach 
 
Cyclic stress-strain curves are generally obtained from 
uniaxial stress condition tests. They are usually 
expressed by a Ramberg-Osgood [3] stress-strain 
expression: 
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Although the cyclic stress-strain curve can describe the 
stable amplitudes of stress and strain, it cannot 
generally describe the branches of hysteresis loops that 
occur in cyclic loading. A material is said to present a 
Masing-type [4] behaviour if the cyclic stress-strain 
curve magnification by a factor of two describes the 
branches of the hysteresis loops. In this situation, the 
hysteresis loops are described by 
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The origin of this curve is located at the compressive 
tip of the correspondent hysteresis loop. 
 
Neuber’s rule and Molsky-Glinka’s method relate local 
and nominal stress ranges, ∆σ and ∆S, to the stress 
concentration factor Kt, by, respectively, equations 
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Abstract. Finite element and local strain approach predictions of cyclic stress-strain were investigated 
for five different types of notched AlCu4.5Mn specimens. Concentration factors for each specimen 
were determined and compared with those available in literature. Average values and ranges for both 
elastoplastic stresses and strains were obtained, for several fully-reversed and pulsating nominal 
traction loading conditions, using non-linear finite element modelling. The obtained results were 
thoroughly compared and discussed. 



The determination of fatigue initiation life can be made 
using Morrow’s modified strain-life equation [5], 
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Moreover, cyclic and strain-life curves are generally 
obtained from uniaxial stress tests. However, 
sometimes a plane strain condition may exist at the 
notch. This can occur whenever the notch radius is 
much smaller than the width or thickness of the 
specimen [6]. In this case, the uniaxial cyclic stress-
strain curve must be modified [7,8] to a plane strain 
Ramberg-Osgood relation between the principal 
stress/strain, 
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For the same reason, Morrow’s modified equation must 
also be converted to an equivalent one. This strain-life 
curve in a plane strain condition is given, in terms of 
the first principal strain amplitude ∆ε1/2, by [6] 
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replacing the ranges of stress  σ and the plastic strain εp 
by the correspondent first principal ranges, ∆σ1/2 and 
∆ε1p/2, in the generalised Poisson’s coefficient µ. 
 
2.2 Finite element and hardening rules 
 
In general, commercial Finite Element codes are 
limited to the kinematic and isotropic hardening rules 

using von Mises yield surfaces. These rules predict 
identical results for uniaxial monotonic tension 
loading, but severely different results in the case of 
load reversal. These two hardening rules are illustrated, 

for uniaxial loading-unloading behaviour, in figure 1. 
 
As shown, kinematic hardening predicts that yielding 
in reverse loading occurs with a 2σ’YS stress change, 
while isotropic hardening predicts yielding only with a 
2σmax stress change, i.e. twice the highest stress level 
reached prior to unloading. Therefore, kinematic 
hardening predicts the Bauschinger effect [9] while 
isotropic hardening does not. This fact can lead to 
significant discrepancies when modelling cyclic stress-
strain behaviour. 
 
A T6 heat-treated AlCu4.5Mn aluminium alloy was 
considered for research purposes. This alloy, as most 
aluminium alloys, presents Masing behaviour. It is 
often used in the aerospacial industry due to its high 
strength combined with excellent formability. The 
chemical composition and mechanical properties of 
this alloy are listed in tables 1 and 2, respectively. 
 
 
Table 1. Main chemical composition of AlCu4.5Mn 
alloy (weight. %) [10]. 
 

Si Mg Mn Fe Cu Zn 
0.85 0.50 0.80 1.0 4.5 <0.25 

 
 
Table 2. Mechanical properties of T6 heat-treated 
AlCu4.5Mn alloy [10]. 
 

Ultimate tensile strength, σ
UTS

  [MPa] 511 

Monotonic yield strength, σ
YS

  [MPa] 463 
Young’s modulus, E  [GPa] 69.05 
Poisson’s coefficient, ν   [-] 0.33 
Cyclic strain hardening exponent, n’  [-] 0.072 
Cyclic strength coefficient, K’  [MPa] 704 

σ

ε

σ’YS

2σmax

2σ’YS

σmax

isotropic

kinematic

Fig. 1. Kinematic and isotropic behaviours. 



3. FINITE ELEMENT MODELLING 
 
In order to consider the influence of geometrical 
discontinuities on the local stress and strain values, the 
behaviour of five distinct notched specimens (vd. fig. 
2) was numerically modelled using the commercial 
code Cosmos/M [11]. Specimens 1 and 3 present 
(notch radius/minimum diameter) ratios of 0.125 and 
0.1, respectively, both specimens 2 and 4 present a 
(notch radius/thickness) ratio of 2.857 and specimen 5 
presents a (notch radius/thickness) ratio of 2. The finite 
element analyses consisted, firstly, in the determination 
of the stress concentration factors by elastic finite 
element analyses and, finally, in the computation of 
inelastic stresses and strains for several monotonic 
loadings of the specimens using elastoplastic finite 
element analyses. 
 

 
In order to obtain the stress concentration factors, two-
dimensional linear elastic analyses were performed 
employing 8-node isoparametric quadrilateral 
elements, for the meshes of specimens 2, 4 and 5, and 
axisymmetric elements, for meshes of specimens 1 and 
3, with full integration. Modelling of specimens was 
performed considering compatible finite element 
meshes, which were obtained by performing 
convergence or mesh refinement studies of the 
solutions obtained from monotonic axial tension 
loading analyses. The obtained convergence curves 
allowed error estimations by the comparison of the last 
two or three solutions [12]. Since the geometries and 
loading of the specimens 1 and 2 present only 
longitudinal symmetry, just half of the specimens was 
considered in numerical modelling, being their final 
mesh-type presented in figure 3. Furthermore, since the 
geometries and loading of the specimens 3, 4 and 5 
present both longitudinal and transversal symmetries, 
only a quarter of the specimens was considered in 
numerical modelling, being their final mesh-type 
presented in figure 4. 

 

 
Due to the localised stress gradients, both meshes were 
very finely spaced in the vicinity of the respective 
superficial critical point, as illustrated in figures 3 and 
4. The maxima effective longitudinal local stresses σ 
were measured at the critical surface elements for 
several nominal axial stresses S, which were defined 
considering the smallest transversal section area at the 
notched zone. The value of Kt is the slope of the linear 
regression of the σ−S relation. Determination of local 
elastoplastic strains and stresses was performed using a 
Huber-von Mises plasticity model and kinematic or 
isotropic hardening rules with a multilinear stress-
strain cyclic curve, assuming large plasticity and a 
large displacement updated lagrangian formulation. A 
force-controlled loading strategy, as the incremental 
control technique, and the Newton-Raphson method, as 
the iterative method, were used to achieve convergence 
under elastic-plastic conditions. The analyses were 
performed using, as loading boundary conditions, 
either pulsating nominal stress loops with 300, 325, 
350, 375 and 400 MPa ranges, or fully-reversed 
nominal stress loops with 600, 650, 700, 750 and 800 
MPa ranges. Both plane stress and plane strain 
analyses were performed. 

Fig. 2. Types of geometries analysed by finite element. 
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Fig. 3. Mesh-type of specimens 1 and 2. 

Fig. 4. Mesh-type of specimens 3, 4 and 5. 



4. RESULTS AND DISCUSSION 
 
4.1 Stress concentration factors 
 
The stress concentration factors obtained for specimens 
1 to 5 are 1.515, 1.765, 1.963, 2.395 and 2.525, 
respectively. These values differ 0.60, 10.37, -4.08,      
-7.62 and 2.77 % from those of Peterson [13], 
respectively. It is worthwhile to note that, due to space 
limitation in this paper, a non-exhaustive presentation 
of the main results referring only one type of specimen 
will be made. In this context, the results obtained for 
specimen 3, for example, concerning the convergence 
study and relative variation of the stress concentration 
factor with the number of degrees of freedom are 
presented in figures 5 and 6, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It can be observed that a relative stress concentration 
factor variation of 5.6×10-3 % was obtained for 38521 
degrees of freedom. Therefore, the associated final trial 
solution of 1.963 can be accepted as a converged 
solution. 

A more detailed comparison of the obtained stress 
concentration factors with those of Peterson [13] was 
also performed. These results are presented, for 
specimen 3, in figures 7 and 8 for non-dimensional 
parameter Φ=d/H equal to 0.05, 0.1, 0.15, 0.2 and 0.25. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It can be observed that the numerically obtained values 
of Kt are, for every value of Φ considered, greater than 
those of Peterson [13], corresponding to minimum and 
maximum relative differences of 0.39 and 2.69, 
respectively. Note that results presented in figures 5 
and 6 correspond to a parameter Φ=0.2. 
 
4.2 Stress-strain predictions 
 
Elastoplastic stress-strain prediction results are 
presented for specimen 5. Figures 9 and 10 illustrate 
the local elastoplastic finite element stress-strain range 
and mean predictions, respectively. Plane stress 
analyses were performed, considering kinematic or 
isotropic hardening rules, for fully-reversed nominal 
stress loops with 600, 650, 700, 750 and 800 MPa. 
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Fig. 7. Comparison of stress concentration factor 
results with those presented by Peterson [13]. 

Fig. 8. Relative difference of stress concentration 
factors. 
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Fig. 6. Relative variation of stress concentration factor
with the number of degrees of freedom. 
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Fig. 5. Convergence study for specimen 3. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From figures 9 and 10, it can be seen that local stress 
∆σ  predictions obtained when considering isotropic 
hardening rule are greater than those originated with 
kinematic hardening rule (vd. fig. 9). Moreover, 
although local strain ∆ε predictions are similar for both 
hardening rule types, mean stress σm predictions are 
null for kinematic hardening and negative for isotropic 
hardening (vd. fig. 10). Therefore, it follows, 
accordingly to the Morrow’s modified strain-life 
equation (eq. 5), that predictions of fatigue initiation 
life based on isotropic hardening rule are less 
conservative than those based on kinematic hardening 
rule, i.e. they predict longer fatigue initiation lives, as 
illustrated in figure 11. A maximum difference of 
almost 11 % of number of fatigue initiation cycles is 
obtained for approximately a 2.8 % local strain range. 
 
Figure 11 illustrates the fact that kinematic and 
isotropic curves do not overlap. This can be explained 
by the fact that a negative mean stress leads to a curve 

translation towards the right, i.e. in the direction of 
greater fatigue initiation lives. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that, since the AlCu4.5Mn alloy presents Masing 
behaviour, it follows that kinematic hardening results 
may be expected to be more realistic than those of 
isotropic hardening rule. 
 
Local strain approach and finite element methodologies 
were carried out, only for kinematic hardening rule, 
considering nominal fully-reversed stress loops (vd. 
fig. 12) or pulsating stress loops (vd. figs. 12 and 13) 
with 300, 325, 350, 375 and 400 MPa ranges. In these 
figures the presented acronyms correspond to: FE – 
finite element, N – Neuber’s rule, MG – Molsky-
Glinka method, PSTRS – plane stress state, PSTRN – 
plane strain state and 1D – uniaxial. The local strain 
approach results obtained for a plane strain state at the 
notch root were performed using equivalent Young’s 
modulus, E1, of 77488.5 MPa and equivalent cyclic 
strain hardening exponent, n’1, and strength coefficient, 
K’1, of 0.0721 and 818.04 MPa, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Kinematic and isotropic fatigue initiation life
predictions. 
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Fig. 9. Kinematic and isotropic local stress vs. strain
ranges. 
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Fig. 10. Kinematic and isotropic local stress vs. strain
mean values. 
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Fig. 12. Local stress vs. strain ranges. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The results for specimen 5 illustrate the general 
tendency of the results obtained for the remainder of 
specimens. It can be observed that plane stress state 
finite element predictions correspond to higher ∆ε and 
εm and lower σm than those of plane strain state finite 
element, and, for the highest values of nominal stress, 
to lower ∆σ, which evidences the increase of material 
resistance when subject to a plane strain state. It can 
also be seen that uniaxial Neuber prediction curves are 
closer to the finite element predictions than those of 
Molski-Glinka, although less conservative than the 
correspondent finite element predictions. Moreover, for 
both uniaxial or plane strain states the ∆σ, σm, ∆ε and 
εm Neuber’s rule predictions are greater than those of 
Molski-Glinka method (vd. figs. 12 and 13), i.e. 
Neuber’s rule gives rise to more conservative 
predictions than Molski-Glinka method, which is in 
accordance with what was reported by Glinka [14]. 

 
5. CONCLUSIONS 
 
In situations of numerical modelling of cyclic loading 
of AlCu4.5Mn notched specimens when only 
kinematic or isotropic hardening rules are available, the 
kinematic rule should be adopted, since it is the most 
appropriate rule for cyclic loading – it does exhibit a 
Bauschinger effect. Considerable differences result 
from the use of either kinematic or isotropic hardening 
rules. Also, stress-strain predictions obtained by the 
local strain approach may significantly differ from 
those of the finite element method. Thus, the selection 
of a modelling methodology must be criteriously 
elaborated. Some of the main factors that must be 
considered in the definition of a methodology 
concerning the prediction of fatigue initiation life of 
notched specimens were referred. 
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Fig. 13. Mean local stress vs. strain values. 


