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Abstract. We present a comparative study between models that follow the two main trends to study fracture
of quasi-brittle materials like concrete. On the one hand we focus on a discrete model that represents the
fracture process by cohesive elements that are inserted in the original mesh only when the opening condition
is met. Such elements also implement contact and friction algorithms. Besides, mesh size is selected so as
to represent the inter-locking effect between the crack surfaces. Everything considered, this approach leads
to an explicit and multiscale modeling of fracture. On the other hand we analyze a continuum model based
on the strong discontinuity approach. It localizes damage in bands that are narrowed to the limit of having
null width and thus simulate the fracture surface. The initiation and propagation processes are modeled by
a bifurcation analysis that searches for the surfaces where damage can be localized at every step. Finally,
we use both approaches to do 3-D simulations of fracture tests in concrete that allow an evaluation of their
relative performance.

Resumen. Esta comunicacion estudia comparativamente modelos que siguen las dos tendencias para abor-
dar el estudio numérico de la fractura de materiales cuasi-fragiles como el hormigbén. Nos centramos por
un lado en un modelo discreto en el que la fractura se representa por medio de elementos cohesivos que
se insertan entre los elementos del la malla original a medida que se propaga. Los elementos incorporan
algoritmos de contacto y friccion. Ademas, el tamafio de la malla se selecciona de modo que se reproduzca
el efecto de engranaje mecanico entre las superficies rotas. Todo ello hace que el proceso de fractura se
simule de modo explicito y que esta aproximacion pueda enmarcarse dentro de los modelos multiescala.
También analizamos un modelo continuo basado en la aproximacion de las discontinuidades fuertes. En ella
se localiza el dafio en bandas que llegan a tener un ancho nulo y que, consecuentemente, simulan la super-
ficie de fractura. El proceso de iniciacion y propagacion se simula por medio de algoritmos de bifurcacion
que identifican las superficies sobre las que se formulan las discontinuidades, lo cual permite ofrecer un
modelo autoconsistente. Por Gltimo, se presenta una simulacion en tres dimensiones de ensayos de fractura

de hormigbn con objeto de comparar los resultados de ambos métodos.

1 INTRODUCTION

Since linear elastic fracture mechanics showed its limita-
tions when applied to high toughness materials (for ex-
ample, tough steels, which are able to develop large plas-
tic zones near the crack tip before tearing off) or quasi-
brittle materials like concrete (whose internal length scale
for fracture processes is much larger than for most mate-
rials), various approaches have emerged to take into ac-
count the nonlinear mechanisms of the fracture process
zone.

One straightforward way to deal with the fracture phe-
nomena is the discrete approach, which identifies the new
crack as newly-emerged boundaries of the bulk material
but still transfers traction in its early stage through a con-
stitutive relation called cohesive law. This methodology
was originally applied to ductile fracture by Dugdale and
Barenblatt and adapted to concrete by Hillerborg and his
coworkers (Hillerborg et al. 1976 [1]; Hillerborg 1985

[2]). It provides clear criteria for fracture initiation and
growth, but the insertion of cracks represents a topologi-
cal problem that is not easy to handle. For long years co-
hesive models were restricted to modeling cracks whose
path was known a priori. There were also attempts of
studying fracture processes with multiple cracks by em-
bedding the cohesive elements into the mesh from the
very beginning of the calculation, but such procedure
was a source of numerical instabilities (Planas, 2003 [3]).
Pandolfi and Ortiz ([4], [5]) came up with a fragmenta-
tion algorithm that solved the problem by inserting cohe-
sive elements when and where they are needed. In prin-
ciple it restricts the possible crack path to pre-existing
element boundaries, although this hindrance can be over-
come by using remeshing procedures. The versatility of
the cohesive fracture model plus the fragmentation algo-
rithm used for propagating dynamic cracks has been well
demonstrated by Ortiz and his coworkers (see Camacho
and Ortiz, 1996 [6]; Ortiz and Pandolfi, 1999 [7]; Ruiz et
al. 2000 [8]; Ruiz et al. 2001 [9]; Pandolfi et al. 2000



[10]; Yu et al. (2002) [11]). So we would like to consider
the fragmentation algorithm as part of the discrete cohe-
sive fracture model which we are going to abbreviate as
DCFF from now on. The simplicity of the model and its
compatibility with the standard finite element framework
make it very attractive for studying complex fracture pro-
cesses.

An alternative way of looking at fracture is to incorpo-
rate strain or displacement discontinuities into standard
finite element interpolations. The development of such
techniques was pioneered by the work of Ortiz (Ortiz et
al., [12]). His work triggered the development of various
powerful methods that allow the efficient modeling of re-
gions with highly localized strains (see Jirasek [13], for
a systematic comparative study of embedded-crack mod-
eling). One of them, termed as the strong discontinuity
approach (SDA), considers fracture as the limit case of a
strain localization in a band of null bandwidth. The SDA
refers to the capture of jumps in the displacement field
(strong discontinuities) by using standard solid mechan-
ics models equipped with stress vs. strain relationships
(continuum constitutive equations). By identifying the
main features that make the standard constitutive equa-
tions consistent with the appearance of strong discontinu-
ities, going through the process of re-evaluating the kine-
matics to include the discontinuous displacement fields,
enhanced strain fields, the SDA naturally brings on its
link with the cohesive fracture mechanics (Oliver et al.,
2000 [14]). Discrete constitutive models are automati-
cally induced through a continuum damage model in the
1D case. For general 2D-3D cases, the weak discontinu-
ity concept is introduced to precede the strong disconti-
nuity condition and at the same time connects with the
physics of the fracture process zone. Another way of em-
bedding strong discontinuities is the recently developed
extended finite element method (termed XFEM; for in-
stance, see Melenk and Babuska, 1996 [15]; Moés and
Belytschko, 1999 [16] or Chessa and Belytschko, 2003
[17]), which utilizes nodal enrichments of the displace-
ment field based on a local partition of unity. It was mo-
tivated by minimizing re-meshing; efforts are therefore
devoted to various enrichment techniques (Belytschko,
2003 [18, 19]) to resolve the crack initiation and prop-
agation.

In this paper we are going to focus on two advanced mod-
els that are quite representative of their respective class:
the discrete cohesive fracture model companied by the
fragmentation algorithm (DCFF) and the strong disconti-
nuity approach (SDA) embedded into the element formu-
lations. In particular, we are interested on how do the two
models tackle the initiation and propagation of cracks in
a quasi-brittle material like concrete.

The organization of the rest of the paper is as follows.
The boundary value problem for a cracked body is pre-
sented in Section 2; a brief review of both models is de-
picted in Section 3. Numerical examples applied to frac-
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Figure 1: Three dimensional body and discontinuity in-
terface .

ture in concrete are presented in Section 4. Finally in
Section 5 some conclusions are drawn.

2 THE BOUNDARY VALUE PROBLEM (BVP)

By way of a general framework, we start by consider-
ing a deformable body occupying an initial configuration
By C R®. The boundary of the body is partitioned into a
displacement boundary 0By, and a traction boundary dB;.
The body undergoes a motion described by a deforma-
tion mapping ¢ : By x [0, T] — R®, where [0, T] is the
duration of the motion, under the action of body forces
pob and prescribed boundary tractions t* applied over
0dBx. The attendant deformation gradients are denoted F
and the first Piola-Kirchhoff stress tensor P. In addition,
the solid contains a collection of cohesive cracks (or dis-
placement discontinuities). The locus of these cracks on
the undeformed configuration is denoted Sy, Fig. 1.

Under these conditions, the weak form of linear momen-
tum balance, or virtual work expression, takes the follow-
ing form:

[ oo =9)-n—P-Von Vo - [ t-[n]ds
Bo S
+/B&t*-nds):o )

where a superposed dot denotes the material time deriva-
tive, Vo is the material gradient, i is an arbitrary virtual
displacement satisfying homogeneous boundary condi-
tions on dBy, t is the cohesive traction over Sy, and [-]
denotes the jump across an oriented surface.

3 HOW DOESEACH MODEL SOLVE THE BVP?

3.1 Thediscrete cohesive fracture model + the frag-
mentation algorithm

From Eqg. (1), it is clear that the presence of a cohesive
surface results in the addition of a new term to the vir-
tual work expression. In order to complete the definition



of the problem, a set of constitutive relations for the co-
hesive tractions t has to be provided, in addition to the
conventional constitutive relations describing the bulk be-
havior of the material.

Ortiz and Pandolfi (1999) [7] postulated a general form of
a free energy density ¢ per unit undeformed area over Sy,
which is a function of the opening displacements, the lo-
cal temperature, some suitable collection of internal vari-
ables describing the current state of decohesion of the sur-
face, as well as the unit normal n to the cohesive surface
in the deformed configuration. The explicit dependence
of ¢ on n is required to allow for differences in cohesive
behavior for opening and sliding.

A potential structure of the cohesive law furnishes its
scalar dependence on the free energy density ¢. By
assuming that ¢ depends on the opening displacements
only through an effective opening displacement and, at
the same time, introducing a parameter 3 which assigns
different weights to the sliding and normal opening dis-
placements, a simple class of mixed-mode cohesive laws
accounting for tension-shear coupling (see Camacho and
Ortiz [6]) is obtained:

t
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The unit vector of the tangential direction of the displace-
ment jump is denoted by s; ts and t,, are the shear and the
normal traction components, respectively and t is an ef-
fective cohesive traction; 8s and 6, are the sliding and
the opening components of the displacement jump, and
0 is an effective opening displacement. The two effec-
tive quantities are going to be related by an irreversible
cohesive law, say, for example, Fig. 2.

Contact and friction are regarded as independent phe-
nomena to be modelled outside the cohesive law. Notice
that the presence of friction may significantly increase the
sliding resistance in closed cohesive surfaces.

3.1.1 Constitutive modelsfor the bulk material

Cohesive models furnish a complete theory of fracture,
and permit the incorporation into the material description
of bona fide fracture parameters such as the fracture en-
ergy and the tensile strength. By focusing specifically
on the separation process, a sharp distinction is drawn
in cohesive theories between fracture, which is described
by recourse to cohesive laws, and bulk material behavior,

Figure 2: Bi-linear irreversible cohesive law.

which is described through an independent set of consti-
tutive relations. The use of cohesive models is therefore
not limited by any consideration of material behavior, fi-
nite kinematics, non-proportional loading, dynamics, or
the geometry of the specimen.

3.1.2 Thecrack initiation and propagation

In calculations, decohesion is allowed to occur along el-
ement boundaries only. Initially, all element boundaries
are perfectly coherent (and all of them could be consid-
ered as possible cracks) and the elements conform in the
usual sense of the displacement finite element method.
When the critical value for the effective cohesive traction
is attained at the interface between two volume elements,
a cohesive element is inserted using a fragmentation al-
gorithm (Pandolfi and Ortiz, 2002 [5]) at that location.
The cohesive element with its proper cohesive law subse-
quently governs the opening of the cohesive surface.

The crack propagation and initiation are not considered
as distinct events in the DCFF. For each loading step,
the fragmentation algorithm checks for possible cracks.
Thanks to this feature, the initiation and nucleation of
cracks can be predicted with ease.

3.2 Thestrong discontinuity approach

Originated from its precedence strain localization, the
main goal of SDA has been to approach the limit case of
a strain localization in a band of null bandwidth, whereas
the general strain localization case is matched by a weak
discontinuity, characterized by continuous displacement
fields and discontinuous but bounded strain fields which
localize in a band of finite bandwidth. See Simo and Ri-
fai (1990), Simo et al. (1993), Simo and Oliver (1994),
Oliver et al. (2002) [20, 21, 22, 23].



3.2.1 Constitutive model for the bulk material

The SDA was introduced as a basic tool to derive a
general framework in which different families of con-
stitutive equations for bulk materials can be adopted,
Oliver (1996) [24]. For inelastic quasi-brittle materi-
als an isotropic damage model is often adopted. The
term damage mechanics has been used to refer to mod-
els that are characterized by a loss of stiffness or a re-
duction of the secant constitutive modulus. First intro-
duced by Kachanov (1958) [25] along the concept of
effective tension, the damage variable was treated as a
scalar (isotropic damage), whose value ranged from 0
to 1. More details about this model can be found in
Chaboche (1979), Carol et al. (1998), Oliver et al. (1990)
[26, 27, 28]. A representative continuum damage model
in the finite deformation range is presented in Oliver et
al. (2003) [29], in which a free energy density function
in terms of the deformation gradient tensor and a set of
internal variables is defined. The constitutive equation is
presented through a scalar strain-like internal variable r
and a stress-like internal variable g. The variable r deter-
mines the damage level of the material through the dam-
age variabled =1 —q(r)/r, and q(r) sets the evolution of
the elastic domain through a damage function. The rate
form of the softening law is defined through the softening
modulus as

q= . (5)

In terms of the stress-strain response, four distinct load-
ing phases can be identified, see Figs.3 and 4.

I. Elastic phase: the stress-state before the point Y (the
yielding point in plasticity, the initiation of inelastic be-
havior in general inelastic solids). In this phase the mate-
rial obeys generalized Hooke’s law.

Il. Inelastic phase: the state between point Y and B. B
is the bifurcation point when the general bifurcation con-
ditions (the loss of uniqueness) is achieved. The harden-
ing/softening modulus takes the value J#, the material
behavior is still continuous.

I1l. Weak discontinuity phase: the state up to point
SD. From the mechanics viewpoint, the weak discon-
tinuity regime defines a zone where the discontinuity is
processed. Physically it signals a change in the behavior
of the bulk material due to the formation of the fracture
process zone. Numerically speaking this transition avoids
an unexpected artificial elastic loading (see Oliver et al.
(2003) [29] for detailed discussion). Finally, from an an-
alytical standpoint, this phase is predicted by a region be-
tween the loss of uniqueness (general bifurcations) and
the loss of ellipticity (discontinuous bifurcations) of the
stress-strain response, see Ottosen and Runesson (1991)
[30, 31].

In this stage a variable bandwidth model is activated,
whose initial width hg (Fig. 4), defined as the ratio be-
tween a critical softening modulus J#: and the discrete
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Figure 3: Characteristic points during the loading pro-
Cess.

softening modulus A, see Oliver et al.(1999) [32], Man-
z0li(1998) [33], Oliver et al. (2000) [14].

IV. Strong discontinuity phase: The point SD corre-
sponds to the onset of the strong discontinuity (the loss
of ellipticity of the stress-strain response). It is charac-
terized by the appearance of a jump in the displacement
field, Oliver et al. (2000) [14].

3.2.2 Thefractureinitiation

The fracture initiation is identified as the appearance of
material instability, or the loss of uniqueness of the solu-
tion (point B in fig. 3). In the mathematical sense, this
is signaled by the singularity of the characteristic tangent
stiffness modulus tensor Q defined as Q; = n;Djjuni (or
the so-called acoustic tensor following the fluid dynamics
terminology), where Dijy is the tangent stiffness tensor, n
is the unit normal vector of the surface Sy, see Fig. (1). A
critical value 7# and a critical direction of the discontinu-
ity surface n are obtained to define the fracture initiation.

3.2.3 Thecrack propagation

Unlike the DCFF, in which all element boundaries are
possible cracks, the SDA needs to define a series of fail-
ure surfaces for crack propagation. For this purpose
an efficient method called the overall tracking has been
proposed by Oliver et al. (2002) to obtain a continu-
ous failure surface. A family of level curves (in 2D) or
level surfaces (in 3D) enveloping the propagation direc-
tion can be constructed in analogy to a heat conduction
problem. This methodology proves itself a powerful tool
especially in simulating multiple cracks (Samaniego and
Oliver 2003 [34]).



Fraciure Process Zone

Strong Discontinuily

Figure 4: Fracture process zone modelled by the strong
discontinuity approach.

4 APPLICATION OF THE TWO MODELS TO
THE PREDICTION OF FRACTURE IN CON-
CRETE

In this section, we proceed to simulate the static behavior
of concrete using the two aforementioned models. Our
aim is to check their relative performance against several
very different specimens and load configurations. We are
starting here by a mode | test in which the path of the
crack is known in advance. DCFF and SDA are used
to simulate the same experimental test conducted with
the same material. Efforts are made to assure the same
boundary value problem is being solved.

For details on the implementation and on the discretiza-
tion for both methods, the readers are directed to Ortiz
and Pandolfi (1999) [7], Pandolfi and Ortiz (2002) [5],
Yu and Ruiz [35], Oliver (1996) [24], Chaves [36] and the
references within. Nevertheless, we would like to men-
tion that DCFF uses 12-node quadratic cohesive elements
composed of two surfaces that are inserted between 10-
node quadratic tetrahedra, while SDA is optimized for 5-
node linear tetrahedra. This implies that different meshes
have to be used to get the same relative accuracy in the
solid representation.

4.1 Numerical example

The particular configuration contemplated in the study is
the three point bend test (TPB) performed in a quasi-static
regime. We specifically aim to simulate experiments con-
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Figure 5: Geometry of a half-notched concrete beam sub-
jected to three point bending, where D = 75 mm, B = 50
mm.

ducted over a micro-concrete (with maximum aggregate
size 5 mm) by Ruiz (1998) [37]. The size of the speci-
mens and the testing method are described in Fig. 5. The
characterization of the concrete is as follows: specific
fracture energy Gg = 62.5 N/m, tensile strength f; = 3.8
MPa, Young’s modulus E = 30.5 GPa, Poisson’s ratio
v = 0.2. The density is p = 2402 kg/m?3. A bi-linear co-
hesive law according to the Model Code [38] is adopted
for the DCFF. The softening modulus ¢ in SDA is ad-
justed accordingly. The B parameter in DCFF is derived
as 8.4 although in this particular example its influence in
the results is negligible for it is a pure mode | test. In
SDA we make a choice of 1 mm for hg, which is proven
to represent adequately the width of the proccess zone at
the initial state [29].

4.2 Thethree-point-bending test

Two meshes were adopted in the modeling. DCFF used a
mesh composed of 8282 nodes, 5183 10-node quadratic
tetrahedrons. The mesh size was chosen to scale the max-
imum aggregate size. The second mesh, used by the SDA
model consists of 6412 nodes and 5183 5-node linear
tetrahedrons. Both meshes have the same appearance for
they share the shape and location of the tetrahedra, i.e. the
vertex nodes are the same, DCFF puts one middle node
at every edge and SDA adds one interior node inside ev-
ery tetrahedron. Figure 6 depicts the visible tetrahedra.
It should be noticed that the middle surface of the speci-
men is not physically represented by element boundaries
which forces DCFF to choose a rough path.

Figures 6 and 7 show some of the numerical results.
The crack pattern is adequately predicted by both meth-
ods although we only draw the deformed mesh given by
SDA. The load-displacement curves in Fig. 7 show that
the maximum load prediction is also very good for both
methods. The DCFF run had convergence problems soon
after the load peak. We should have in mind that the mesh
is very refined and implies a rough crack path, which im-
poses a great computational effort for the solver at each
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Figure 6: The fracture patterns at loading displacement
0.25 mm.

loading step. The SDA model is more stable for this par-
ticular mesh, provided that it allows the crack to be lo-
cated in the middle of the element. In fact, we have tried
an alternative mesh in which the crack surface is fully
contained in inter-tetrahedron boundaries and the SDA
was not able to get to the peak load. This alternative mesh
favors DCFF because it implies a smooth crack propaga-
tion. Actually DCFF run up to the insertion of the last
cohesive element in this case.

5 SUMMARY AND CONCLUSIONS

We have briefly compared two distinct finite element
approaches to non-linear fracture mechanics for quasi-
brittle materials like concrete.

On the one hand we have focused on a discrete approach
that represents cracks by means of cohesive elements.
The model uses a fragmentation algorithm that inserts
the cohesive elements within the original mesh where and
when the opening condition is met. The elements are also
provided with contact and friction routines that enable
them to simulate explicitly physical phenomena that may
condition the macroscopic response. This also implies
that the process zone has to be adequately resolved which
may lead to take recourse to re-meshing techniques. It
is precisely this kind of topological problems what in-
creases the computational cost and may fade the appeal
of the method. This approach to study fracture is com-
patible with any bulk constitutive law. Indeed, it has been
used successfully to simulate both ductile and brittle frac-
ture. The ability of simulating separately events that are

Force vs. Displacement
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Figure 7: The comparison of the %nrrp vs._displacement

curves obtained by the DCFF, SDA and the experimental
data.

of different nature gives this model a multi-scale charac-
ter.

On the other hand the strong discontinuity approach stud-
ies fracture within a continuous framework. The adjec-
tive strong refers to the ability of capturing jumps in the
displacement field across a surface with zero bandwidth.
Doing so implies an enhancement of the kinematics of the
governing equations. The strain localization starts when
a failure surface is reached in the space of the principal
stresses. From then on there is a softening of the proper-
ties of the material and a localization of the strain over a
band whose width tends to zero, the whole process being
controlled by a damage law. The search for the surface
that is likely going to hold the fracture in the next step is
done by a standard bifurcation analysis.

Both approaches have been used to model a simple
mode | TPB test in concrete. The mesh arrangement
plays an important role in both models. DCFF works
better when element boundaries are placed in the track
trajectory (which in this case is known beforehand) and
may not converge when dealing with many cracks and
fragments. Likewise, SDA prefers mesh orientations that
allow the main crack going through the elements and is
not able so far to handle multi-cracking processes (in 3D).
The element size is chosen in DCFF to represent the ag-
gregate size and consequently works as a material length
that determines some of the mechanisms of concrete frac-
ture. SDA uses the width of the weak discontinuity tran-
sient zone as a parameter to model the nucleation of the
process zone. The results of both models are quite close
to their experimental counterparts. Nevertheless, some
more cases in a wider variety of geometries and load-
ing conditions should be run in order to complement this
study.
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