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ABSTRACT 
 

This communication presents an elasto-viscoplastic contact model of an impact-indentation test by means of fractional 
calculus. The models aims at characterising this contact by a rheological model based on the superposition in series of 
a dashpot and a non linear spring. The dashpot gives the dissipative character and the superposition in series the 
permanent character of the strains. Finally, the spring gives the non linear stiffness based on Hertz theory. 
 
The model treatment is achieved by fractional calculus, which is solved numerically using G1 method. Then, the 
results are compared with those obtained from experimental tests. 
 
Finally, material properties have been obtained from the contact characterisation. 
 

RESUMEN 
 

En esta comunicación se presenta un modelo de contacto elasto-viscoplástico de un ensayo de impacto-indentación 
mediante la aplicación del cálculo fraccionario. El modelo persigue caracterizar dicho contacto mediante un modelo 
reológico basado en la superposición en serie de un amortiguador y un muelle no lineal. El amortiguador proporciona el 
carácter disipativo y la superposición en serie el carácter permanente de las deformaciones. Finalmente, el muelle 
proporciona la rigidez no lineal basada en la teoría de Hertz. 

El tratamiento del modelo se efectúa por medio del cálculo fraccionario que se resuelve numéricamente utilizando el 
método G1. Posteriormente, se realiza una comparación de los resultados con los obtenidos de ensayos experimentales. 

Finalmente, a partir de la caracterización del contacto se han obtenido las propiedades del material. 
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1.  INTRODUCTION 
 
The use of polymeric materials has been continuously 
increasing in the last years within the automotive 
industry not only to improve fuel efficiency and 
crashworthiness but also for their energy dissipation 
capacity, possibility of recycling, design versatility and 
good surface quality [1]. Besides, they can be 
reinforced so that they increase their specific 
mechanical properties. 
 
In order to design the polymeric components (material, 
geometry, dimensions...) in the automotive industry, the 
material behaviour against impact is a key point. 
Nevertheless, material properties (characterisation and 
material model) become especially important, since they 

depend highly on the strain rate at which they are 
loaded [2]. 
 
In almost all the practical situations, the parts or 
components are subjected to complex loads which 
induce a complex response in the component where non 
homogeneous strain and strain rate distributions prevail. 
This complex response can be divided into two other 
ones: the structural global response, in which both the 
material and geometry take part, and the local response, 
in which the material response prevails. 
 
To fully define the local response, the use of a 
rheological model, based on the superposition in series 
of a dashpot and a non linear spring, is proposed to 
solve the contact problem during impact-indentation, 
based on Hertz theory [3, 4]. 



 
Contact problems induce non-linear equations which 
generally can be solved after fulfilling an arduous and 
complex labour. 
 
Hertz theory is restricted to non conforming surfaces, 
continuous and frictionless, and to perfectly elastic 
solids subjected to small deformations. Contact between 
non conforming surfaces takes place at a point or along 
a line and generally, in spite of the load, contact zone 
dimensions are small in comparison with the solids size. 
Under this simplification, a local concentration of stress 
is originated that may be analysed regardless of the 
global stress distribution resulting in the solids. [6] 
 
This paper deals with the resolution of the non-linear 
equations derived from the contact problem during 
indentation following Hertz theory by means of 
transforming the governing non-linear equations into 
linear fractional integro-differential equations. 
 
First, a brief theoretical background is presented 
concerning to fractional calculus, laying emphasis on 
the definitions of Günwald-Letnikov and numerical 
treatment. Next, the experimental technique used for the 
impact-indentation tests is described. Then the 
equations resulting from the rheological model are 
solved after having been transformed making use of 
fractional calculus, obtaining a linear integro-
differential fractional equation that is numerically 
solved. Finally, the results obtained are compared with 
those provided by experimental tests. 
 
 
2.  THEORETICAL BACKGROUND 
 
Fractional calculus is a discipline that has historically 
been relegated to the theoretical mathematics, but 
during last decades, different applications have been 
attributed to this branch of mathematical analysis. [7, 8, 
9, 10]. 
 
Next, two definitions of fractional derivatives are 
described: the ones of Riemman-Liouville and 
Grünwald-Letnikov. 
 
The definition of Riemman-Liouville is generally 
employed for non-integer order integrals. Indeed, the α  
order derivative with respect t  variable for a function 
( )f t , with 0α <  and the lower integration limit being 

zero, is defined as 
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where ( )zΓ  is the gamma function of real argument z , 
given by 
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This function represents the generalisation of the 
factorial function, satisfying 
 
 ! ( 1)z z= Γ + , (3) 
 
which coincides with the classic definition of the 
factorial if z  is an entire number. For example, for 

1 0α− < < , the application of Eq. (1) on the function 
qt  yields 
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This result is employed in Section 3 to transform the 
non-linear equations characterising the contact 
mechanics into linear integro-differential fractional 
equations. 
 
The Grünwald-Letnikov definition of the fractional 
derivatives, for any real order α , arises from the 
backward definition of the n entire order derivative. 
Indeed, the first derivative is given by 
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the second by 
 

 2
20

( ) 2 ( ) ( 2 )
D ( ) lim

( )t

f t f t t f t t
f t

tΔ →

− −Δ + − Δ=
Δ

, (6) 

 
the third by 
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and so on, thus the n  order derivative satisfies 
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where: 
 /N t t= Δ , (9) 
 
and the Newton binomial 
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have been employed. If the gamma function is applied, 
considering that 
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thus Eq. (8) may be transformed into 
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If in this equation the n  order is substituted by any real 
order α , the Grünwald-Letnikov definition for 
fractional derivatives yields 
 

1

0
0

( )
D ( ) lim ( ) ( )

( ) ( 1)

N

t
j

j
f t t f t j t

j
α α α

α

−
−

Δ →
=

⎛ ⎞Γ − ⎟⎜ ⎟= Δ − Δ⎜ ⎟⎜ ⎟⎜ Γ − Γ +⎝ ⎠
∑   

 (13) 
 
or finally, 
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where the terms 1jA +  are the so-called Grünwald-
Letnikov coefficients, satisfying 
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In Eq. (14) it should be remarked that the fractional 
derivative is constructed employing all the history of the 
function, weighted by the Grünwald-Letnikov 
coefficients, putting in evidence the memory of 
fractional operator. To avoid the use of the gamma 
function in numerical applications, the following 
properties of the weighting coefficients may be 
employed: 
 1 1A = , (16) 
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This last property is known as the fading memory of 
fractional derivatives, implying the most recent history 
is more influent than the fastest. 
The fractional operator can be numerically calculated 
by [9]: 
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which is analogue to the conventional quadrature 
formulae, where ( )jw α  are the weighting coefficients, 
depending on the derivation order. To simplify the 
nomenclature, Eq. (19) may be also written as 
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One of the most employed methods is the G1 one, based 
on the definition of Grünwald-Letnikov. 
 
The G1 method is generally more efficient for 
derivation orders comprised between 0 and 1. The 
weighting coefficients jw  are given by 
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which may be also evaluated form the recurrence Eq. 
(17).  
 
This numerical method will be employed in Section 4 to 
solve the Hertz contact problem enunciated later. 
 

3.  MATERIAL AND EXPERIMENTAL 
TECHNIQUE 

 
The experimental part was presented in a previous work 
[10]. The material used is an injection grade isotactic 
Polypropylene (PP) homopolymer (SM6100K, 
Montell). Specimens are 4 mm  thick and 80 mm  
diameter circular plates, and are subjected to 
instrumented-indentation-impact tests. 
 
The tests are carried out in a Dartvis falling weight test 
machine (Ceast). A 0.7437 kg  striker with a 12.7 mm  
diameter hemispherical dart is released from different 
heights. The striker hits the sample that lies on a rigid 
10 mm  thick steel surface, inducing a local indentation 
on the surface of the sample. 
 

Guides

Mass

Striker

Clamping 
system
Specimen

Steel plate  
Fig. 1 Indentation-impact test configuration in a falling 
weight impact machine. 
 
Up to 8 tests have been carried out in different sectors 
of each specimen, as the area affected by the contact 
strain is very small compared to the size of the whole 
specimen. 
 
Tests have been carried out from 5 mm  to 100 mm  
height, with increments of 5 mm . Each test has been 
repeated 3 times to analyse reproducibility. The 
influence of the thickness of the specimen has also been 
analysed, by superposing two or three samples and 
comparing force-time curves. 



 
As a result, force-time curves show a good 
reproducibility, even if the curves must be displaced in 
time to avoid the dynamical effect of the beginning of 
the curves i.e. due to specimen accommodation effects 
[5]. 
 
Experimental force-time curves show a quasi-
symmetrical shape, increasing the maximum force and 
decreasing contact time as the impact energy increases 
[5]. 
 
 
4.  RHEOLOGICAL MODEL 
 
The response of polymeric materials subjected to 
impact-indentation loads may be described by the 
application of a rheological model based on Hertz 
contact theory [4, 5]. This model is based on the 
superposition in series of a dashpot and a non linear 
spring. The dashpot gives the dissipative character and 
the superposition in series the permanent character of 
the strains. Finally, the spring gives the non linear 
stiffness based on Hertz theory. 
 
Figure 1. shows the rheological model of the impact-
indentation test, in which m  represents the striker mass, 
k  the constant of the non linear spring and c  the 
constant of the dashpot. 
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Fig. 2. Rheological model 
 
The constant k  is related to the materials’ properties as 
follows: 
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where: 
 
R  is the radius of the striker, iE  and sE  the Young 
modulus of the striker and specimen, respectively; iν  
and sν  the Poisson modulus of the striker and 
specimen, respectively [5]. 
 
Following the model of Fig. 2, the governing equations 
for an impact-indentation test with initial relative 
velocity 0(0)x x=� � , which depends on the falling height 
of the massh , are given by: 
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Taking into account the following expression, obtained 
from the model: 
 

  1 2x x x= +   (24) 
 

and eliminating 2x , Eq. (23) may be written as: 
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where the operator ( )i��  and ( )i�  denote second and first 
derivatives with respect to time, respectively. This non-
lineal differential equation may be solved, for example, 
by means of Runge-Kutta family algorithms. 
 
From the solution of the α  order derivative for the 
function qt  with respect to the variable t indicated in 
Eq. (4), taking, 1q = , and 1/2α = − , the term 3/2

1x  
may be related with the semi-integral 1/ 2

1D x−  by 
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where (2) 1Γ =  and (5/2) 3 /4Γ = π  have been 
taken into account. 
 
Taking into account Eq. (26), Eq. (25) is transformed 
into the linear integro-differential equation 
 

( )1/ 2
1 1

3 D
4

mx k x c x x−π= − = − −�� � �  (27) 

 
where it should be pointed out that operator ( )D i  
represents fractional derivative with respect to the 
variable x  instead of t  [11]. 
 
Aimed at exploring the capabilities of the fractional 
calculus to solve problems relative to contact 
mechanics, the integro-differential equations (27) are 
numerically solved, making use of the G1 method. To 
do so, an algorithm based on the central finite 
difference is proposed [11]. For that, uniform 
increments for the time tΔ  are considered. Hence, at 
the instant nt , Eq. (27) becomes 
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The fractional operator may be discretised by Eq. (20), 
giving 
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where, as in the previous section, it has been taken into 
account that G1 method has 1w−  coefficient equal to 
zero. The weighting coefficients jw  are taken from Eqs. 
(21). 



 
For the described case, the interval 1xΔ  varies for each 

nt  instant, satisfying 
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Indeed, any forward displacement would be given by 
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conducing to the following equations: 
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This lineal differential equation may be solved by 
means of central finite difference method [11]. The 
velocity nx� and acceleration nx��  are given by 
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Consequently, Eqs. (32) lead finally to  
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After solving the equations, k , and therefore sE , and c  
may be calculated by fitting the results to the 
experimental ones [5]. To do so, maximum force maxF  
and restitution coefficient ε  have been used. 
 
Figure 3 represents the impact force for a drop height of 
a) 20 mmh =  and b) 40 mmh =  obtained in 

experimental tests and by the numerical model. 
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(b) 
Fig. 3. Experimental impact force and the one computed 

by fractional calculus. 
 
The values of maxF , ε  , k  , c  , and sE , found for 2 
different falling heights, 20 mmh = (h20 test) and 

40 mmh =  (h40 test) are shown in Table 1. 

 
Table 1. Parameters for the rheological model. 

 
Test 

maxF
[N] 

ε  k  
[ -3/2kNm ] 

c  
[ -1Nsm ] 

sE  
[GPa ]

h20 1004 0.59 329900 6080 2.64 
h40 1495 0.56 332000 6060 2.66 

 
The elasticity moduli obtained are 2.64 GPa and 2.66 
GPa for h20 and h40 tests, respectively. These values 
are more than twice the value obtained from impact-
tensile tests (1,2 GPa) [5, 12]. Therefore, it is shown the 
deformation pattern dependence upon material 
properties. 



 
5.  CONCLUSIONS 
 
In this communication a contact problem resulting from 
an impact-indentation test has been solved using 
fractional calculus. The proposed method consists in 
transforming the non-linear equation that governs the 
contact in a fractional integro-differential equation. The 
numerical solution has been carried out by means of G1 
method, based on the fractional derivative definitions of 
Grünwald-Letnikov. 
 
From the analysis of the results it may be stated that the 
elasticity modulus of PP has been obtained from the 
rheological model. The values obtained are more than 
twice the value obtained from impact-tensile tests. 
 
Concluding, it has been proved that the fractional 
calculus is able to study certain mechanical contact 
problems. Thus more complex applications could be 
investigated in the future. 
 
To better fit to experimental data, other rheological 
models may be used as well as new types of damping. 
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