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ABSTRACT 
 

Several methods have been developed to test interfacial adhesion in composite materials such as pull-out, microbond 
and push-in/push-out tests. Some of them can only be applied to single fibre matrix composites and others are difficult 
to perform on brittle fibres due to premature fracture of the fibre. Push-in tests, consisting on pushing the fibre with a 
micro or nanoindenter on a bulk specimen, constitute a powerful technique that can be applied directly on composite 
laminates. However, the interfacial adhesion values obtained from different tests (microbond, push in) often differ and 
even are subjected to a large scatter. This might be due to the fact that the existing analytical solutions that are typically 
used to interpret the experimental data take into account the constrain effect of the surrounding fibres on a simplified 
manner. To study this, we have carried out a careful micromechanical modelling of the push-in test, coupled with 
experimental adhesion testing in a glass fibre reinforced epoxy matrix composite. The model takes into account the 
interfacial fracture process by means of interface cohesive elements at the fibre–matrix interface and focuses on the 
study of the constrain effects due to the local configuration of the surrounding fibres.  
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1.  INTRODUCTION 
 
Advanced computational micromechanics has 
demonstrated its potential to predict the constitutive 
response of fibre-reinforced composites from the 
properties of matrix, fibre and their interface [1], [2]. To 
quantify the interfacial properties, several 
micromechanical methods exist to test interfacial 
adhesion in composite materials such as the pull-out 
test, the microbond test and the push-in and push-out 
tests. This kind of tests present an ideal interfacial 
adhesion measure since they carried out on real 
composite laminates and not on samples fabricated with 
a particular geometry for such a purpose. This will 
allow establish the degradation of the interface 
properties on the real composite under service 
conditions, as it is widely known that these composites 
are particularly sensitive to exposition to hot-wet 
conditions [3]. Other tests suffer from several 
experimental difficulties: the pull-out test is not easy to 
perform on brittle fibres due to premature fracture of the 
fibre and the push-out test [4], [5], requires the 
preparation of thin membranes (~50μm) of the 
composite material prior to testing. 
In this situation, the push-in test, consisting on pushing 
one fibre with a micro or nanoindenter on the cross-
section of a bulk specimen, [6]-[9], constitutes a 
powerful technique that can be applied directly on real 
composite laminates, either before or after degradation 
under service conditions. Nevertheless, the evaluation of 

interfacial properties remains a controversial issue 
among researchers of composite materials due to 
experimental partly due to the fact that the existing 
analytical solutions typically used to interpret the 
experimental data are based on simplified shear lag 
analytical models [10], [11]. As such, these models only 
take into account the constrain effect of the surrounding 
fibres in a simplified way, but the neighboring fibres are 
distributed in irregular configurations and no solution 
exists for the stress distribution around an indented fibre 
in a non-axisymmetric configuration. The axisymmetric 
models used involve an averaged distance to the 
nearest-neighbour fibres, which are usually considered 
perfectly rigid [8], [9]. As such, the derived parameters 
to account for the effect of neighbour fibres remain 
somewhat arbitrary. 
To overcome this limitation, we have carried out a 
careful micromechanical modelling of the push-in test, 
coupled with experimental adhesion tests in a glass fibre 
reinforced epoxy matrix composite using 
nanoindentation. The model addresses the interfacial 
fracture process through the use of interface cohesive 
elements at the fibre–matrix interface. The study 
focuses on the constrain effects due to the local 
configuration of the surrounding fibres and helps to 
determine the validity of the simplified shear lag models 
currently used to interpret the results. It is shown that 
the analytical models are valid when the indented fibre 
is relatively isolated from its neighbours, but that they 
tend to overestimate the constrain effect for closely 



packed fibres, the scenario usually found in polymer 
matrix composites. Nevertheless, it is concluded that the 
simplified shear lag models can be safely used to 
estimate the interfacial shear strength provided that the 
constrain effect is carefully derived from the initial part 
of the push-in loading-displacement curve. 
 
2.  MATERIALS AND EXPERIMENTAL 

TECHNIQUES 
 

A unidirectional glass/epoxy composite was used for 
this study. Pre-impregnated sheets of E-glass/MTM 57 
epoxy resin were purchased from Advanced Composite 
Group (UK). Rectangular panels of 350 x 300 mm2 
were heated at 3 ºC/min and consolidated at 120º C and 
0.64 MPa in an autoclave for 30 minutes. They were 
cooled at the same rate of 3 ºC/min and the internal 
pressure was released at 80 ºC. The nominal fibre 
volume fraction was 54%. Blocks of 1 x 1 x 1 cm were 
cut and polished on SiC paper to 1000 grit finish 
followed by a diamond slurry up to 1 μm. The samples 
were mounted on a MTS Nanoindenter XP instrumented 
equipped with a Berkovich tip. Fibres covering a wide 
range of diameters (between 14 and 32μm) and different 
environments (position of the neighbouring fibres) were 
selected for the tests, as shown in two examples in 
figure 1. 

(a)                                                    (b) 

 
Figure 1. Examples of indented fibres showing the local 
configuration of the surrounding fibres: (a) a closely packed 
fibre and (b) a more isolated fibre. 
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Figure 2.  (a) Typical indentation load-displacement curve 
performed on a glass fibre and (b) sketch illustrating the 
indentation response of the fibre showing the two components 

of the indenter displacement: the penetration of the indenter in 
the fibre cross-section uind and the compression of the fibre 
and deflection of the matrix ufibre. 
 
The push-in test consists of pushing the indenter into the 
cross-section of a fibre which is perpendicular to the 
polished section. The indentations were performed at a 
displacement rate of 50 nm/s at various levels of 
maximum load ranging between 20 mN and 700 mN. 
Figure 2 (a) shows a typical load-displacement curve 
obtained during indentation of one fibre. As shown 
previously in polymer matrix composites [12] no 
significant discontinuity in the load-displacement curve 
is observed at the onset of debonding. Several authors 
[8], [9], have thoroughly work on the treatment of the 
indentation curves in order to obtain a debonding load 
without the need for time-consuming load step 
procedures and optical inspection of the indented fibres. 
But for the sake of clarity, the most important aspects 
are briefly discussed below in conjunction with the 
experimental results obtained in this work. 
 
3.  EXPERIMENTAL RESULTS 

 
3.1 Extraction of load-fibre displacement curve 
 
The treatment relies on the identification of two 
components in the indenter displacement. The first is 
related to the penetration of the indenter in the fibre 
crosssection uind, and the second is associated with the 
compression of the fibre in the surrounding epoxy 
matrix and the deflection of the matrix ufibre, (figure 2 
(b). In order to derive the elastoplastic indentation 
response of E-glass one can either indent a piece of bulk 
glass or derive it from finite element simulations. The 
second approach was used in this work. 
Once the elastoplastic indentation response of bulk glass 
is known, the fibre displacement ufibre can be simply 
obtained by subtracting the elastoplastic component of 
indentation (uind) from the total displacement u recorded 
during the test, as shown in figure 3 (a). The curve in 
figure 3 (b) shows the typical behaviour found 
elsewhere [8], [9], for the fibre compression once the 
displacement due to the elastoplastic indentation is 
removed. 
The initial linear part corresponds to the elastic response 
of the fibre/matrix system, while most authors interpret 
the departure from linearity at the critical load Pcrit as 
the result of interfacial debonding. In this work, the test 
was interrupted at increasing loads for optical inspection 
of the indented fibres. 
As shown in figure 3 (c), it was difficult to establish 
whether the departure from linearity marked the onset of 
plastic deformation of the matrix or the onset of 
interfacial debonding, especially because debonding 
was gradual and did not occur on the entire periphery of 
the fibre simultaneously. 
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Figure 3. (a)  Load-displacement curve of E-glass fibre and 
bulk glass (as predicted by FEM); (b) the load-fibre 
displacement behaviour obtained by subtracting the 
elastoplastic component of indentation (uind) from the total 
displacement u recorded during the test; (c) optical images of 
the indented fibre showing that the debonding is gradual. 
 
3.2. Analytical shear lag model 
 
The analytical shear-lag models currently used to 
interpret the load-displacement curves obtained in the 
push-in test assume a perfect hexagonal fibre packing, 
elastic deformation of the matrix and a perfectly bonded 
interface. The proximity of the surrounding fibres is 
taken into account through the parameter Re, as 
illustrated in figure 2(b), which represents the distance 
from the indented fibre to the ring of neighbouring 
fibres. The model assumes that the longitudinal 
displacement of the matrix equals zero at distance Re. 
Under this assumption, a linear relationship is obtained 

between the displacement of the fibre uf and the applied 
load P [8], [9]. 
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where r is the fibre radius, σf is the fibre axial stress, Gm 
is the matrix shear modulus and Ef is the fibre Young’s 
modulus. Finally, the maximum shear stress at the onset 
of debonding can be assimilated to the interfacial shear 
strength: 
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where 
crit
f  is the axial stress at the cross-section of the 

fibre at debonding. It is interesting to note that the 
analytical model tries to account for the effect of the 
surrounding fibres through the parameter (Re/r). This 
parameter (Re/r) has no physical interpretation but it has 
been shown to correlate to the local packing of the 
indented fibre and can be denoted as the constraint 
factor. In the treatment proposed in [8], the linear part of 
the indentation curve is used to estimate n and (Re/r) 
through equations (1) and (2). Once n is determined, the 
interfacial strength can be derived from the critical load 
for debonding Pcrit  through equation (3). 
 
3.3. Effect of fibre diameter and neighbouring fibres 
 
The shear-lag model presented above was applied to the 
experimental results obtained in this work. Overall over 
30 fibres were tested. Figure 4 (a) displays seven 
representative load-displacement curves, showing the 
large differences that can be found for fibres of different 
diameters or located in different environments (for the 
sake of clarity only the loading portions of the curves 
are displayed). As mentioned above, the linear part of 
the curves was used to estimate the constraint factor 
(Re/r) through equations (1) and (2). As expected from 
equation (1), the slope of the linear part in this graph 
was constant for all the fibres, but the onset of departure 
from linearity was very sensitive to the local 
environment of the fibres. 
Figure 4 where the load was normalized by the fibre 
diameter and n clearly shows the behaviour of fibres 
with similar diameters. Fibres with a smaller constraint 
factor Re/r, i.e. having more closely packed fibres 
around, showed a more marked departure from linearity, 
corroborating the strong effect of the local environment 
of the neighbouring fibres on the push-in test. 
Finally, the calculated interface shear strength 
(calculated from the load at the onset of the departure 
from linearity) is plotted in figure 5 as a function of the 
constraint factor. An average value of 83 MPa was 
obtained although the uncertainty was large due to the 
difficulty on determining the critical load. The axial 
fibre stress at the onset of debonding varied linearly 
with the constraint factor (figure 5), as expected. 
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Figure 4. (a)  Load-fibre displacement behaviour for some 
representative fibres of different diameter; (b) Normalized 
load curves for fibres with 32-35 m diameter showing the 
effect of the confinement parameter Re/r. 
 

 
Figure 5. Interface shear stress and axial fibre stress at the 
onset of departure from linearity as a function of the 
constraint factor. 
 
It is interesting to note that the ratio Re/r can be related 
to the fibre volume fraction Vf under the assumption of 
hexagonal fibre packing according to: 
 

 1
ln( / ) ln 2 / 3

2 fRe r V
                                   

(4) 

 
which for a nominal fiber volume fraction of 54% leads 
to Re/r =2.6. The fact that the reported values are 
considerably lower reflects that the configuration of the 
fibres was far from the ideal hexagonal packing, as can 
be clearly seen in figure 1. In fact, the constraint factors 
obtained were very small and one should wonder 

whether this approach is valid for composites with very 
high volume fractions of fibres. In addition, it was 
difficult to establish whether the onset of departure is 
due to interface decohesion or local plastic deformation 
of the matrix, which has a shear yield stress of 80 MPa, 
similar to the interfacial strength. To elucidate this, the 
validity of the approach is discussed in the following 
sections based on the results of finite element 
simulations.          
 
4.  MODELLING 
 
The experimental results above demonstrate that the 
effect of the local environment of the surrounding fibres 
is not negligible, especially in cases where the volume 
fraction of fibres is very large. Advanced numerical 
simulations that take into account the details of the 
microstructure are thus critical to understand the role 
played by the surrounding fibres on the test results and 
to determine the minimum distance from the tested fibre 
to its nearest neighbours to minimize the constraint 
effect on the measured interfacial properties. The 
modelling strategy to simulate the push-in test is 
depicted in Fig. 6.  

 
Figure 6.  Simplification assumed in this work to model the 
effect of the local environment of the fibres as a solid ring with 
the same properties than the fiber located at a distance Re 
from the indented fibre. 
 
For the sake of simplicity, the effect of the surrounding 
fibres in (a) at a distance Re from the centre of the fibre 
has been modelled as a solid ring, displaying the same 
properties that the fibres. A fibre diameter of 20μm was 
assumed and the position of the solid ring was varied in 
the range Re/r  (1.0, ∞) to account for the constraint 
effect of the neighbouring fibres. 
The numerical analysis of the indentation of the fibre 
cross-section was carried out using the finite element 
method. The simplification depicted in figure 6 allowed 
for the implementation of an axisymmetric model. The 
fibres and matrix were meshed using two-dimensional 
four–node linear axisymmetric elements with reduced 
integration. The Berkovich indenter was modelled as a 
rigid conical indenter with an included angle of 70.3º. 
The specimen dimensions were large enough so that the 
effects of the boundary conditions were negligible and 
the mesh was refined near the indented zone, to avoid 
numerical instabilities at the contact between fibre and 
indenter. Glass fibres were modelled as linear 
elastoplastic isotropic solids using a Von Mises 
plasitification criterion, with the properties given in 
Table 1. The yield stress of the glass fibres was fixed by 
fitting the numerical simulations to the indentation 
behaviour of the fibres. The MTM57 epoxy matrix was 
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assumed to behave as an isotropic, elastoplastic solid. 
The matrix elastic constants were obtained from the data 
sheet of ACG and are reported in Table 1. The yield 
stress of the MTM57 epoxy matrix was fixed at 140 
MPa by fitting numerical simulations to the indentation 
behaviour of the matrix [13], giving a shear yield stress 
of 80 MPa. 
 
Table 1. Material Properties 
 

Material 
E 

(GPa)  y 

(MPa) 
E-Glass 70  
MTM57 
epoxy 

3.4  

 
Interface decohesion was simulated through a cohesive 
crack model, using first-order interface elements of 
Abaqus (COHAX4) inserted at the fibre/matrix interface 
which follow a traction-separation (t-δ) constitutive law. 
In the absence of damage, the interface behaviour was 
linear with an initial stiffness large enough to ensure the 
displacement continuity at the interface and to avoid any 
modification of the stress fields around the fibres in the 
absence of damage. This linear behaviour ends at the 
onset of damage, which occurs when the traction acting 
on the interface reaches the interface strength, tc.  
From the viewpoint of the interface properties, the 
interface behaviour is controlled by two parameters, 
namely the interface strength tc and the fracture energy, 
Gi, which stands for the area under the curve t-δ. The 
interface strength was fixed at tc= 80 MPa, based on the 
preliminary experimental results obtained based on the 
shear-lag model. Regarding the interface fracture 
energy, this parameter should not significantly affect the 
onset of debonding and a value of 100 J/m2 was used, 
as in previous analyses [14]. 
 
5.  NUMERICAL RESULTS AND COMPARISON 

WITH EXPERIMENTS. 
 

5.1. Effect of the surrounding fibres on the linear slope 
of the loading curve 
 
The load-displacement curves obtained by FEM, for 
fibres with different constraint factors Re/r are plotted in 
figure 7 assuming a perfect interface. As in the 
experiments, an initial linear response was obtained and 
the stiffness increased with the constraint of the 
surrounding fibres (lower Re/r). It is interesting to 
notice that the curves departed earlier from linearity as 
the constraint increased, marking the onset of plastic 
deformation of the matrix around the fibres (indicated 
by the gray arrows in the figure). At this point, the shear 
stresses reached τmatrix=80 MPa, as expected from the 
matrix yield stress (table 1). 
Comparison between the FEM results and the results 
that would be obtained on applying the shear lag model 
leads to the conclusion that the latter tends to 
overestimate the constraint effect of the neighbouring 
fibres when the confinement effect is large (Re/r < 3). 

 
Figure 7. Load-fibre displacements results obtained by FEM, 
for fibres with different constraint factors Re/r, assuming a 
perfect interface. As the constraint increases (lower Re/r), the 
stiffness of the response increases.  
 
This is shown in figure 8 where the parameter n as 
obtained from the slope of the FEM load-displacement 
curves and from equation (2) is plotted as a function of 
the confinement. The shear lag model overestimates the 
confinement effect of the surrounding fibres on the 
stiffness of the load-displacement curve as much as 
30%, for Re/r<3. 

 
Figure 8. Comparison between the shear lag model results 
and the FEM results. Value of n versus Re/r as measured by 
FEM and as calculated using equation (2). 
 
5.2. Effect of the interfacial strength 
 
The load-displacement curves obtained by FEM are 
plotted in figure 9 for fibres with different constraint 
factors Re/r and an interfacial strength of 80 MPa. The 
dashed line indicates the equivalent behaviour assuming 
a perfect interface.  
In all cases, the departure of linearity, as indicated by 
the gray arrows, marked the onset of debonding of the 
indented fibre, even if the interfacial shear strength was 
comparable to the matrix shear yield stress. An 
interesting situation would be that in which the matrix 
shear yield stress were lower than the interfacial 
strength, which will be the subject of future studies. 
Finally, figure 10 shows the comparison between one 
experimental push-in test and the corresponding FEM 
simulation for different values of the constrain factor 
Re/r. A perfect match is obtained in this case for 
Re/r=1.5. It is worth mentioning at this point that the 
same value of interfacial strength, i.e. 80 MPa, was 
obtained using the shear lag model, but with Re/r = 2.  
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Figure 9. Load-fibre displacements results obtained by FEM, 
for fibres with different constraint factors Re/r, assuming a 
perfect interface and a cohesive interface with an interfacial 
strength of 80 MPa. 
 
This means that the simplified shear lag models used 
constitute an appropriate method to analyse the push-in 
test, provided that the parameter (Re/r) is obtained by 
fitting the linear slope of the load displacement curve 
using equations (1) and (2). However, it should be 
stressed out that the values of (Re/r) obtained in this 
way act as fitting parameters and are larger than the real 
distance to the neighbouring fibres, because the shear 
lag model overestimates the constrain effect, as shown 
in figure 8. 

 
Figure 10. Comparison between experimental results on a 20 
m diameter fibre and FEM results with different Re/r and an 
interfacial strength of 80 MPa. A perfect match is obtained for 
Re/r=1.5. 
 
6.  CONCLUSIONS. 
 
A detailed micromechanical modelling of the push-in 
test, coupled with experimental tests, was carried out in 
a glass-fibre reinforced epoxy matrix composite using 
nanoindentation. The model took into account the 
interfacial fracture process using interface cohesive 
elements at the fibre–matrix interface and focused on 
the constrain effects of the nearest neighbouring fibres 
to determine the validity of the simplified shear lag 
models currently used to interpret the results of the test. 
The results showed that the analytical models currently 
used are valid when the indented fibre is relatively 
isolated from its neighbours. For closely packed fibres 
(Re/r < 3), which is the normal situation in polymer 
matrix composites, the shear lag model tends to 
overestimate the constraint effect of the neighbouring 
fibres. However, according to the FEM results, the 

simplified shear lag models used constitute an 
appropriate method to analyse the push-in test even in 
this case, provided that the parameter (Re/r) is obtained 
by fitting the linear slope of the push-in load 
displacement curve. In this case, the values of (Re/r) 
obtained act as fitting parameters and are larger than the 
real distance to the neighbouring fibres. The simulations 
also showed that plasticity effects in the matrix are not 
negligible for large local volume fraction of fibres and 
can give rise to erroneous interpretations of the push-in 
test. The results showed that in the case of the 
composite tested, with comparable matrix shear yield 
stress and interfacial strength, the push-in test can be 
applied safely to determine the interfacial strength. 
Further work is needed to determine the relative matrix 
shear yield stress to interfacial strength ratios at which 
this is not the case. 
 
7.  RERERENCES 
 
[1] Cox, B., Yang, Q., 2006. Science 314, 1102-1107. 
[2] González, C., LLorca, J. 2006. Acta Mater., 54, 
4171. 
[3] Saud A., Ghydaa A., Safaa A.R. 2009. Materials and 
Design 30, 1835–1840. 
[4] González, C., LLorca, J. 2001. Acta Mater., 49, 
3505. 
[5] Rollin, M., Jouannigot, S., Lamon, J., Pailler, R. 
2009. Composites Science and Technology 69, 1442–
1446. 
[6] Mandell, J.F., Chen, J.H. and McGarry, F.J. 1980. 
Znt. J. Adhes. Adhes. I, 40. 
[7] Kalinka, G., Leistner, A. and Hampe, A. 1997. 
Composites Science and Technology 51, 845-851 
[8] Kharrat, M., Chateauminois A., Carpentier, L. and 
Kapsa, P. 1997, Composite Part A 28A, 39-46. 
[9] Zidi, M., Carpentier L., Chateauminois A., Sidorof, 
F. 2000. Composites Science and Technology 60, 429-
437. 
[10] Cox, H.L. 1942, Br. J. Appl. Phys. 3, 72. 
[11] Kelly, A. and Tyson, W.R. 1965. J. Mech. Phys. 
Solids 13, 329. 
[12] Desaeger, M. and Verpoest. I. 1993. Compos. Sci. 
Technol. 48, 215. 
[13] Molina-Aldareguia, J.M., Rodríguez, M., 
González, C., LLorca, J. 2009, in preparation. 
[14] Gonzalez, C., LLorca, J. 2007b. Composites 
Science and Technology 67, 2795-2806. 
 
8.  ACKNOWLEDGEMENTS 

 
This investigation was supported by the European 
Union through the project MAAXIMUS and by the 
Comunidad de Madrid and the ERA-NET MATERA 
through the program DEFCOM. The composite 
materials used in this investigation were manufactured 
at INTA (Instituto Nacional de Técnica Aerospacial), 
and the authors want to express their gratitude to Dr. J. 
M. Pintado and to Dr. M. A. de la Torre. 
 
 

0

50

100

150

200

250

300

350

400

0 500 1000 1500

Lo
ad

 (
m

N
)

F ibre d isp lacem ent (nm )

8R e/r =

Re/r =3

P erfect in terface

Cohes ive in te rface

 inte rface=80 M Pa

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

0 5 0 0 1 0 0 0 1 5 0 0

Lo
ad

 (
m

N
)

F ib re  d is p la c e m e n t  (n m )

 in te r f a c e= 8 0  M P a

R e /r  =  1 R e /r  =  1 .5

R e /r  =  3

F E M

E x p e rim e n ta l


