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ABSTRACT 

 

Although real cracks are inherently three-dimensional, relatively little effort has been put into the study of 3D cracks 

from both linear elastic and elastic-plastic points of view. Analytical solutions are difficult to obtain, and three-

dimensional numerical simulations are complex and time consuming. Due to these limitations, the understanding of 

three-dimensional fatigue crack propagation has remained a challenging problem for the fatigue research community. 

The need to improve fatigue life predictions, particularly in aircraft structures, has been a motivation for research in this 

area. One of the outcomes of the research carried out over the last few decades is that fatigue cracks in metals are 
partially closed over part of the load cycle. This phenomenon of crack closure is thought by many to be the key to 
understanding the effect of non-uniform loading.This paper investigates the influence of surface effects on the closure 
behaviour of 3D fatigue cracks. Linear elastic analyses of 3D cracks show that Poisson's ratio influences the stress field 
close to the free surface. A 'corner point' singularity exists which differs from the usual 1/ r  value for 2D cracks. In this 

region, both crack closure and corner point singularities are essentially "free surface" effects and it is difficult to 
investigate 3D crack closure without addressing the associated stress singularity problem. The aim of this paper is to 
investigate the influence of free surface effects on the closure behavior of 3D fatigue cracks, addressing some numerical 
difficulties related to FE modeling of the problem. 
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1.  INTRODUCTION 

 

One of the difficulties in modelling 3D cracks is related 
to the shape of the crack front, which is often assumed 
to intersect the free surface at 90º. Under these 
conditions, the order of the stress singularity may differ 

from the usual square root singular K-field. In such 3D 

crack problems the order of the singularity at the free 
surface depends on Poisson's ratio and the intersection 
angle of the crack front with the free surface [1,2,3,4]. It 

seems reasonable to suggest that, real mode I fatigue 

cracks might choose to preserve the 1/ r singularity 

and therefore the crack front tends to intersect the free 

surface at a critical angle ( 0º
c

β ≠ ) which is a function 

of the Poisson's ratio of the material and ensures square-

root singularity. 

In a recent paper, Heyder et al. [1] report experimental 
measurements of the angle at which crack fronts break 
the free surface for transparent specimens (PMMA) 

under four-point bending. They have shown that, at least 
for mode I crack propagation, the crack front is shaped 
so as to ensure square-root singularity at the intersection 

of the crack front with the free surface. Therefore, in 

real materials ( 0ν ≠ ) the assumption, frequently made 

in models, that the crack front intersects the free surface 

at 90º will modify the order of singularity of the stress 
field in the region of the crack front close to the free 
surface. This may complicate the interpretation of crack 
closure in this region, and is important, since it is in the 

surface layer where closure effect are likely to be most 
significant [5,6,7]; incorrect modelling of the stress state 
will present difficulties when comparing modelling to 

experimental data. Since both phenomena, corner point 

singularities and crack closure, may co-exist and have a 
significant effect close to the free surface, we have 
divided our work in two parts. In the first part, we 

examine a 3D linear elastic crack and modify the shape 
of the crack front, for different values of Poisson's ratio, 
in order to ensure square-root singularity at the corner 

point (see Figure 1). In the second part of the paper, an 
elasto-plastic growing crack is modelled in a finite plate. 

The closure behaviour is studied for different values of 
Poisson's ratio for both, straight and modified crack 

fronts. Finally, based on the results obtained, some 
conclusions are drawn. 



 
Figure 1. Rectangular plate with a central straight 

through crack. Coordinate system for a point in the 

vicinity of the crack front. 

 

 

2.  SINGULARITIES IN 3D CRACKED BODIES 

 

Shivakumar and Raju [4] showd that two different types 

of stress singularities co-exist along the crack front of 

3D cracks, such as in the problem to be analysed (Fig. 

1.). One is the conventional cylindrical singularity, and 
the second is the vertex singularity, which is assumed to 
exist at the corner point (point Q in Figure 1). 
 
2.1. Cylindrical singularity 

 

The stress and displacement fields of the cylindrical 
singularity can be expressed as, 

( , )
ij ij

C z r σλσ θ= ⋅  (1) 

( , ) u

ij iju D z r
λθ= ⋅  (2) 

where Ci,j and Di,j are functions of z and θ. Both 
σλ , 

uλ  

are independent of spatial coordinates r, θ and z and 

1uσλ λ= − . 

 
2.2. Vertex singularity 

 

Benthem [2, 3] used the vertex type of singularity to 
describe the singular stress field at the intersection of 

crack front and free surface (point Q in Figure 1). The 

stress and displacement field equation for this type of 
singularity can be written as follows, 

( , )
ij ij

E R σλσ θ φ= ⋅  (3) 

( , ) u

ij iju F R
λθ φ= ⋅  (4) 

where the functions Eij and Fij are functions of θ and φ, 
and R is the distance between the corner point and the 
point at which the stress is evaluated. In this case 

σλ , 

uλ  are functions of the Poisson’s ratio and, once again, 

1uσλ λ= − . 

 
2.3. Cylindrical and Vertex singularities  

 

Based on a superposition argument, Shivakumar and 

Raju [4] suggested that the stress field of a 3D plate 
under remote tension can be written as the superposition 
of the stress field from a plane strain plate under remote 

tension together with corrective tractions on the free 

surface of the 3D plate. Hence they concluded that the 

stress and displacement fields can be expressed as 

follows, 
1/2 '( , )

ij ij ij
C z r E R σλσ θ −= ⋅ + ⋅  (5) 

1/2 '( , ) u

ij ij ij
u D z r F R

λθ −= ⋅ + ⋅  (6) 

In these equations the first term is the conventional 

cylindrical singularity associated with the stress intensity 

factor, which is dominant along most of the crack front. 

The second term is either a vertex or cylindrical 
singularity. Shivakumar and Raju [4] obtained good 

agreement between their FE solution and Benthem’s [2, 

3] solution for a vertex singularity. The relative 

influence of each of these singularities depends on the 

value of Poisson’s ratio. 

 

 

3.  SINGULARITIES IN 3D CRACKED BODIES 

 

This section presents details of the finite element 

analysis performed to quantify the order of stress 

singularity along the crack front, using a log–log type of 

regression analysis. The case where the crack front is 
normal to the free surface was studied for different 

values of Poisson’s ratio (ν = 0, 0.1, 0.2, 0.3, 0.4 and 
0.45). The material is assumed to be isotropic with 
positive Poisson’s ratio. After identifying the region 
where the classical square-root singularity is not the 
dominant term, the shape of the crack front was 
modified for specific values of the Poisson’s ratio (v= 
0.2, 0.3 and 0.4), in order to ensure square-root 
behaviour at the corner point.  
 
3.1. Linear elastic FE modelling 

 
The geometry of the problem under study is presented in 
Figure 2. It consists of a square plate with a finite central 
crack. For convenience only one eighth of the plate was 
modelled. The dimensions of the plate are W = 100 mm 
with a central crack a0 = 10 mm, and thickness t of 10 

mm. For a linear elastic analysis the material behaviour 
is defined by Young’s Modulus (E) and Poisson’s ratio. 

In the present work E = 100 GPa and Poisson’s ratio ν = 
0, 0.1, 0.2, 0.3, 0.4 and 0.45. 

Figure 3 shows the finite element mesh used. This mesh 
has 106160 isoparametric brick elements (C3D20), each 

with twenty nodes, and was designed with an increasing 
level of refinement towards the crack front region. The 

level of mesh refinement was set by reference to a 
convergence analysis carried out in 2D plane strain. The 
element size for the 3D analysis corresponded to that for 

the highest refinement level in 2D. Twenty layers of 
elements were used through the thickness of the plate 
with decreasing thickness from the centre of the plate 

towards the free surface (see Figure 3b). The thickness 

of the layers at the center of the plate and at the free 
surface is 0.469 mm and 0.031 mm, respectively. 
 



 
Figure 2. Rectangular plate with a central straight 

through crack, geometry and boundary conditions. 

 

 
 

 
Figure 3. Mesh details, 3D model: (a) Mesh of a square 

plate with 100 x 100 mm with an initial crack (a0) of 10 

mm and thickness (t) of 10 mm; (b) Mesh detail of the 

crack front, crack front lies along z axis. 

 

3.2. Log–log regression analysis 

 
The log–log regression analysis is based on the nodal 
stresses and displacements from the finite element 

analysis (FEA). A Matlab routine was written to read the 
nodal coordinates, nodal stresses and displacements 
from the FEA at different inclinations h for different r 

values and different coordinates z. For each inclination 

θ, an analysis along the crack front was performed for 
41 rows with different z coordinates shown 
schematically in the following figure. 

 

 
Figure 4. 3D crack front, coordinate systems. 

The analysis was carried out for five different θ values 

(θ= 0º, 45º, 90º, 135º and 180º). It will be apparent that 

σy is zero along the crack faces (h = 180º) and uy = 0 

along the plane ahead of the crack tip (θ = 0º). Hence, 

for θ≤ 90º the regression analysis was performed based 

on the stresses on the y direction (σy), for θ = 135º and 

180º displacements on the y direction (uy) were used. 

Given the difficulty of evaluating two coefficients and 

one exponent in equations (5) and (6), these equations 

were simplified to one constant and one exponent as 
suggested in [4] 

y
C r σλσ = ⋅  (7) 

u

y
u D r

λ= ⋅  (8) 

Taking logarithms on both sides of equations (7) and (8) 

we obtain the following two equations 

log( ) log( ) log( )
y

C rσσ λ= + ⋅  (7) 

log( ) log( ) log( )
y u

u D rλ= + ⋅  (8) 

σλ and 
uλ  may now be calculated based on the best fit 

of a straight line to the plot of log(σy or uy) vs. log(r). As 

an example Figure 5 shows the stresses and 
displacements for different z/t coordinates for θ = 0º and 
180º, respectively. 

 

 
Figure 5. Log-log regression analysis region: a) 

Stresses for different z/t coordinates and θ=0º; b) 

Displacements uy for different z/t coordinates and 

θ=180º. 
 

The lower and upper limits for the regression analysis 
were chosen taking into account that values very close to 

the crack tip will be inaccurate due to an inability of the 

FE shape functions to model displacements accurately; 
and values further away from the crack tip will include 
higher order terms. The upper limit was selected taking 

into account the region close to the crack tip where 
classical the stress intensity factor governs the stress 
field, r/a ≈ 0.1 is usually taken as a reference. 

a) 

b) 



3.3 Power of the stress singularity and displacement 

and thickness of the boundary layer 

 

Using the regression analysis described above it was 

possible to estimate the power of the dominant stress 

singularity (
σλ ) and displacement (

uλ ) along the crack 

front. This analysis was performed for a range of 

Poisson's ratio values as shown in Figure 6. 

 

 
a) v =0 

 
b) v =0.3 

 
c) v =0.45 

Figure 6. Log- Power of the stress singularity and 

displacement along the crack front for v =0, 0.3 and 

0.45. 

 

It can be clearly seen that, independently of the value of 
Poisson's ratio and of the plane of analysis, θ, the power 
of the stress singularity at the centre of the plate (z/t = 0) 

is 0.5. In addition, the variables separable assumption is 

valid on this region since ( 1uσλ λ= − ). For the case v =0, 

the power of the stress singularity along the crack front 

is constant and square-root singular without showing any 
influence of the free surface, this is expected since 

cβ = 

0º for v = 0. For larger values of Poisson's ratio the 

stress singularity is weaker at the free surface (z/t=0.5). 

Some specific results are shown in Table 1, which can 

be compared with results available in the literature 

shown in Table 2. 

 

Table 1 - Power of the stress and displacement at mid-

plane and free surface for different values of the 

Poisson’s ratio 

 
 
Table 2 - Reference values for the power of the stress 
singularity and displacement for different values of the 
Poisson’s ratio at the free surface 

Poisson's 
Benthen 

[2,3] 

Shivakumar and Raju 

[4] 

Bažant and 

Estenssoro [8] 

ratio, v λσ λσ (θ=0º) 
λu -1  

(θ=180º) 
λσ 

0,00 -0,5 -0,497 -0,497 --- 

0,30 -0,452 -0,451 -0,452 -0,452 

0,40 -0,414 -0,407 -0,417 -0,413 

0,45 --- -0,356 -0,391 --- 

0,50 -0,332 --- --- --- 

 
It can be seen that the present results are in good 

agreement with those from references [2,3,4,8]. 

The region close to the free surface where the stresses 
are not square-root singular (e.g. Figures 6 b and c) is 
usually called the boundary layer region. In interpreting 

the results the thickness of the boundary layer was 
calculated using the first point along the crack front 
where the stress singularity exceeds 1% of the order of 

the stress singularity at the centre of the plate (see 
Figure 6 c). Using this criteria the thickness of the 

boundary layer is 0%, 1%, 2.5%, 4%, 12.5% and 15 % 
of the thickness of the plate for v =0, 0.1, 0.2, 0.3, 0.4 

and 0.45, respectively. Results of the same order of 
magnitude were obtained by Shivakumar and Raju [4]. 
 

3.4. Critical intersection angle 

 
Bažant and Estenssoro [8] argued from energy and other 
considerations that the front edge of a propagating crack 

must terminate at the free surface obliquely, at a critical 



angle which is a function of the Poisson’s ratio, ensuring 

square-root singularity at the corner point. An analytical 

solution for the critical intersection angle is not 

available, although some numerical [2,3,9] solutions and 

experimental [1] data are available in the literature. 

The critical intersection angle is calculated imposing 

square-root singularity at the corner point, for different 

Poisson’s ratio values. The aim of the present work was 

not the calculation of the critical intersection angle, 

therefore results available in the literature were taken as 

a reference. Figure 7 presents data for βc given in 

reference [16]. The solution given by the dashed curve 

was obtained by Heyder et al. [1] based on the 3D dual 

discontinuity method, the continuous line is an empirical 

equation proposed by Pook [10]. The solution proposed 

by Heyder et al. [16] was adopted in this work.  
 

 
Figure 7. Intersection angle of the crack front with the 

free surface ensuring square-root singularity under 

mode I, after Heyder et al. [1]. 
 
3.5. Modification of the crack front geometry 

 
As described above, the geometry of the crack front was 
modified (see Figure 8) in order to enforce square-root 
singularity at the corner point. 
 

 
Figure 8. Different crack front geometries: a) Crack 

front normal to the free surface; b) and c)  

 

The procedure adopted consisted of the following steps: 

(1) Running a finite element simulation for a crack with 
a straight front, see Figure 8a; 

(2) Calculation of the boundary layer thickness based on 
the log–log regression analysis previously described; 

(3) Modifying the shape of the crack front in the 
boundary layer region so that for the chosen value of m 
the crack front intersects the free surface at the critical 

angle, see Figure 8b and c; 
(4) Running a finite element analysis of the same 

problem with a modified crack front shape; 
(5) Log–log regression analysis of the modified crack 

front problem and comparison of results. 

 

Two different shapes were studied (see Figure 9): 1) a 

circular arc crack front within the boundary layer and 2) 

a linear crack front with a circular transition between the 

boundary layer and "plane strain" like region. 
 

 
Figure 9. Geometrical and mesh details of different 

crack front shapes close to the free surface (v=0.3). 

 

Figure 8 and 9 show details of the modified crack front. 

Figure 10 shows the improvement in the power of the 
displacements obtained by modifying the shape of the 
crack front. 

 
Figure 10. (a) Geometric details of the crack fronts 
close to the free surface; (b) power of the displacement 
for different crack front geometries and v = 0.3. 
 
It can be seen that within the boundary layer region a 
significant improvement takes place within 0.49 < z/t < 

0.5, however little improvement is obtained for points 
further away from the free surface (0.44 < z/t < 0.49). 
The results obtained with both crack front geometries 

are quite similar, therefore for simplicity the crack front 

with the linear end close to the free surface was adopted 
for further calculations. 
 

 

4.  3D FINITE ELEMENT MODELLING OF 

PLASTICITY-INDUCED CRACK CLOSURE 

 
The aim of this section is to investigate the relevance of 
corner point singularities to the closure behaviour of 3D 

cracks. The first step is to characterize the closure 
behaviour of fatigue cracks with a crack front normal to 

the free surface for v = 0, 0.2, 0.3 and 0.4. Secondly, for 
v = 0.2, 0.3 and 0.4 the shape of the crack front will be 

modiffied according to the procedure previously 
described in order to assure a square-root singularity at 
the corner point. 

Three-dimensional simulations of plasticity-induced 
crack closure were carried out using a standard node 



release scheme [5]. The crack is allowed to grow by one 

element size by releasing nodes ahead of the initial 

crack front every two load cycles. The nodes are 

released sequentially by modifying the appropriate 

boundary conditions. The node displacement method 

was used to calculate the opening stresses. This method 

consists of monitoring the displacement of a node (the 

first node behind the crack tip in the present work) as 

the load is applied [11]. The opening stresses are found 

when the displacement of the node monitored became 
positive during the loading stage of a load cycle. It 

should be noted that issues such as mesh refinement, 

crack growth scheme, method of calculating the opening 

stresses and number of load cycles between node 

releases can affect the results. The current work does not 

seek to address any of these aspects explicitly, therefore 

all simulations were performed under the same 

conditions, i.e, same mesh density, crack growth 

scheme, opening stress calculation method and load 

conditions (σmax/σyield =0.5 and R=0). 

Figures 11 a) and b) compare the opening stresses for 

the case of straight crack front a) and corrected crack 

front b) it can be seen that the different levels of stresses 
singularity along crack imposed by the elasticity 
solution do not seem to be of great practical significance 
in terms of the magnitude of the opening stress levels. 
For lower levels of remote applied stresses this 
difference may increase. 
 

 

 
Figure 11. Comparison of the opening stresses for the 

case of straight crack front a) and corrected crack front 

b) respectively. σmax/σyield =0.5, R=0 and a0=1.0mm. 

 

 

5.  DISCUSSION OF THE RESULTS AND 

CONCLUSIONS 
 

The results presented show that modelling of plasticity-
induced crack closure is not significantly influenced by 

the nature of the elasticity solution where the crack front 

meets the free surface. The effect of different types of 

stress singularities along the crack front for different 

values of the Poisson’s ratio and crack front geometries 

was shown to have little effect on the closure behaviour 

in particular for 0.2 < ν < 0.4. It seems that, at least for 

the loading conditions used in the present work, the 

plasticity associated with the stress field along the crack 

front dominates the solution in such a way that the 

different levels of elastic stress singularity along the 

crack front do not have significant influence on the 
closure behaviour.  
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