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ABSTRACT 

 
The cohesive zone model approach, in conjunction with a damage formulation has been used by many authors to 
simulate delamination using finite element codes. Most of these models available in the literature are developed for pure 
mode loading, and then extended to analyze mixed-mode loading situations. However, these models have not been 
validated correctly under mixed-mode loading conditions where an incorrect selection of the parameters of the model 
can result in inaccurate simulation predictions. To obtain accurate simulation results, the cohesive formulation 
previously developed by the authors has been modified. Mode-dependent penalty stiffness has been introduced in the 
formulation as well as the damage evolution law has been redefined. Different loading scenarios are simulated to 
validate the accuracy of the new formulation presented. 
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1.  INTRODUCTION 

 

Delamination is one of the most common types of 
damage in laminated fiber-reinforced composites due to 
their relatively weak interlaminar strengths. 
Delamination or interlaminar damage may arise under 
mode I loading and under mode II loading, however in 
practical applications, delamination is more likely to 
grow under mixed-mode loading conditions. An 
effective method to analyze delamination is using 
cohesive zone models [1-5].  
Cohesive zone models provide and ideal representation 
of the delamination process of advanced composite 
materials. The excellent performance of cohesive zone 
models in the simulation of delamination is due to the 
accurate kinematics representation of the fracture 
process, based on a strong discontinuity in the 
displacement field and to the possibility to use 
constitutive models that correctly account for the 
different loading modes.  
The cohesive zone model approach, in conjunction with 
a damage formulation has been used by many authors to 
simulate delamination using finite element codes. 
Moreover, the latest versions of commercial nonlinear 

finite element codes incorporate the capability to 
simulate delamination. Most of these models available 
in the literature are developed for pure mode loading, 
mode I or mode II loading, and then extended to analyze 
mixed-mode loading situations. However, these models 
have not been validated correctly under mixed-mode 
loading conditions where an incorrect selection of the 
material properties can result in inaccurate simulation 
results [6]. To obtain accurate simulation results, a 
reformulation of the cohesive formulation developed by 
the authors [3,5] is presented in this paper. The 
formulation is modified by introducing mode-dependent 
penalty stiffness and redefining the damage evolution 
law. Different mixed-mode loading scenarios are 
simulated to validate the accuracy of the formulation 
presented. 
 

2.  REFORMULATION OF THE COHESIVE 

DAMAGE MODEL 

 
The constitutive behaviour of cohesive elements is 
implemented using a cohesive damage zone model that 

relates the tractions, τ, to the displacement jumps, ∆ , at 
the interfaces where crack propagation occurs. Damage 



initiation is related to the interfacial strength of the 

material, oτ . When the energy dissipated is equal to the 

Fracture Toughness of the material, Gc, the traction is 
reduced to zero and new crack surfaces are formed. The 
constitutive law used in this work is a bilinear relation 
between the tractions and the displacement jumps [5,7]. 
The bilinear cohesive law uses an initial linear elastic 
response before damage initiation, as shown in Figure 1. 
This linear elastic part is defined using a penalty 
stiffness parameter, K, that ensures a stiff connection 
between the surfaces before crack propagation. The 
interfacial strength and the penalty stiffness define an 

onset displacement jump, o∆ , related to the initiation of 
damage. 
 

 
Figure 1 Bilinear constitutive law used for quasi-static 

loading. 
 
The displacement jump across the interface is obtained 
from the displacements of the points located on the top 
and bottom sides of the interface in the local coordinate 
system. 
Further detail of the boundary value problem and the 
kinematics of the model are detailed in [3,5]. In the 
following sections the reformulation of the constitutive 
equations is described. 
 
 
2.1 Constitutive equations 
 
The Helmholtz free energy by unit surface of the 
interface under isothermal conditions is divided in two 
terms: 
 

( ) ( ) ( )concohdd ∆∆∆ Ψ+Ψ=Ψ ,,               (1) 

 

where ( )cohd,∆Ψ  and ( )con∆Ψ  refer tot he cohesive 

and contact energy contributions, respectively. The 

vector { }T321 ,, ∆∆∆=∆ contents the displacement 

jumps between the two homologous points of the 
respective adjacent surfaces, and d is the scalar isotropic 

damage variable. It should be noted that ∆  acts as the 
free variable (i.e. displacement driven formulation) and 
d is the internal variable that ensures the irreversibility 
of the model [5,10]. 
The definition of the energy terms should be selected 
such as it yields to a unilateral and a symmetric 
constitutive behaviour for propagation mode I and shear 
modes, respectively. The corresponding expressions are: 
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where x  are the Macaulay brackets defined as 

( )xxx +=
2
1 , and ijδ is the Kroenecker delta. ijK are 

the components of the stiffness matrix.  
 
The stiffness matrix is defined as a diagonal matrix, 
therefore only the diagonal terms: K11, K22 and K33 are 
non zero. K11, K22 and K33 are the penalty stiffness for 
modes II, III and I, respectively. Applying Coleman's 
method [2], the constitutive equation reads: 
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where 
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2.1 Equivalent mixed mode norms 
 
To formulate the damage evolution law, a mixed-mode 

norms of the tractions, τ, and the displacement jumps, λ, 
have been to be defined. In the original model [3,5] they 
were defined as the Euclidean norm of the individual 
tractions and displacement jumps, respectively. 
However, in the reformulation of the model using 
different penalty stiffness, these mixed-mode norms 
need to be redefined. The relation between the mixed-

mode traction τ  and the mixed-mode displacement jump 

λ is defined as: 
 

( ) λτ Bkd−= 1          (5) 

 
where kB is a mode-dependent interfacial stiffness.  
 

The mixed-mode traction τ  is defined as the Euclidean 
norm of the individual tractions τ1, τ2 , τ3. The mixed-

mode displacement jump λ reads: 
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and the mixed-mode interfacial stiffness kB is defined as: 
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To completely define the evolution of the damage 
variable under mixed-mode loading, a local mixed-mode 
ratio B is defined as: 
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Defining Ksh=K11=K22 and using equation (8) in equation 
(7), the mixed-mode interfacial stiffness results in a 
condensed form as: 
 

( ) shB BKBKk +−= 133        (9) 

 
 
2.3 Damage activation function and evolution law 
 
The damage activation function is defined as: 
 

( ) ( ) 0≤−Η= drF ∆∆        (10) 

 

where ( )∆Η  is a monotonic loading function which 

depends on the jump displacement vector, and rd is the 
threshold function. Both functions are updated at every 
time t, and they are respectively defined as: 
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It should be noted that the first term of equation (11) is 
directly the ratio of the energy dissipated during the 
damage process and of the critical energy release rate, 
i.e. Gd/Gc [6]. Therefore, from equations (11) and (12) 
the expression which defines the damage variable d 
reads: 
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To complete define the constitutive model it is necessary 
to define the displacement jumps corresponding to 

delamination onset, o∆ , and to delamination 

propagation, f∆ , under mixed-mode conditions. The 
Benzeggagh and Kenane criterion [8] is used to define 
these parameters, yielding to [5]: 
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where o

sh∆  and o

3∆  are the displacement jumps 

corresponding to delamination onset in pure mode I and 

shear mode respectively, and f

sh∆  and f

3∆ are the 

displacement jumps corresponding to delamination 
propagation in pure mode I and shear mode respectively 
[5]. 
 
2.4 Rate of energy dissipation 
 
To ensure the thermodynamic consistency of the model, 
the dissipated energy by surface unit during the damage 

propagation process, Ξ , has to be equal or greater than 
zero: 
 

0≥=Ξ dY &      (16) 

 
where the thermodynamic force Y associated with the 
internal variable d is defined as: 
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Equation (17) demonstrates that the thermodynamic 
force Y is always equal or greater than zero; therefore 

the term d&  must be positive. Since the damage variable 

is a function of rd and the local mixed-mode ratio B, the 
following equation must be satisfied: 
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The threshold function rd is always positive according to 

equation (12), and the term 
dr

d

∂
∂

 is also always positive: 
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Therefore, since the local mixed-mode ratio B can either 

increase or decrease, the term 
B

d

∂
∂

 must be zero to 

ensure the thermodynamic consistency of the model: 
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Previous equation is equivalent to the condition given in 
[6] for the selection of the pure mode interfacial 
stiffness. Using the initiation and propagation criteria 
given in previous section, the condition to ensure the 
thermodynamic consistency reads: 
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3.  VALIDATION EXAMPLES 

 
Simulations of delamination propagation under pure 
mode I, pure mode II, and mixed-mode loading are 
performed. The double cantilever beam (DCB) and the 
end-notched flexure (ENF) test specimens are used to 
simulate delamination propagation under pure mode I 
and under pure mode II loading respectively. The 
mixed-mode bending (MMB) test specimen is used to 
simulate delamination growth under mixed-mode 
loading. The configurations of the DCB, ENF and MMB 
test specimens are shown in Figure 1. 
 

 
Figure 2. DCB, MMB, and ENF test specimens. 

 
Four-node cohesive elements implemented as Abaqus 
user elements [3,5] and two-dimensional plane stress 
elements (Abaqus CPE4 elements) are used to simulate 
DCB, MMB, and ENF tests in unidirectional carbon-
fiber reinforced epoxy composite. The specimens 
simulated are 150mm long, 20mm wide, with two 
1.55mm thick arms, with an initial crack length of 3 mm. 
A mode I penalty stiffness of K33=10

6
N/mm

3
 is used. 

The remaining material properties are E11=120GPa, 
E22=E33=10.5GPa, G12=G13=5.25MPa, G23=3.48MPa, 

ν12=ν13=0.3, ν23=0.5, GIc=0.260kJ/m
2
 and 

GIIc=1.002kJ/m
2
. 

 
Models using 0.15mm long cohesive elements along the 
length of the specimen, and 10 plane stress elements 
along the specimen’s thickness are created to simulate 
the DCB, MMB and ENF tests with the different 

interface strengths o

3τ  and o

shτ . The initial size of the 

delamination in the DCB and MMB specimens is 
simulated by removing the corresponding cohesive 
elements. For the ENF specimen, pre-damaged cohesive 
elements are placed in the pre-cracked region to avoid 
interpenetration of the crack faces. 
Several simulations with the same elastic and fracture 

properties but with different values of o

3τ using the DCB 

test specimen are performed. The results are compared 
with the analytical expressions obtained using LEFM 
which depend only on the fracture toughness. The 
relation between the applied load and the displacement 
in shown is Figure 3 where it can be observed that the 
results during crack propagation match the LEFM 
solution, regardless of the interface strength. Lower 
values of the interlaminar strength result in lower values 
of the maximum applied load. Nevertheless, there are no 
differences in the load-displacement curve when steady 
state delamination growth takes place. 
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Figure 3. Load displacement curve obtained for 
different interface strengths in a DCB test. 

 
Similar simulations are performed to predict 
delamination growth under pure mode II loading for 

different values of o

shτ using the ENF test specimen. The 

relation between the applied load and the displacement 
is shown in Figure 3. As observed in the pure mode I 
tests, the results obtained match the LEFM curve during 
self-similar delamination growth, regardless of the 
interface strength. 
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Figure 4. Load displacement curve obtained for 
different interface shear strengths in a ENF test. 

 
A similar exercise is performed for specimens under 
mixed-mode loading. A mixed-mode ratio of 50% is 
simulated by setting the distance c shown in Figure 1 to 
63.18mm [9]. Several simulations with the same elastic 
and fracture properties but with different interface 
strengths are performed. The interface strengths are 
varied to investigate their effect on the results. The 
results obtained are presented in Figure 4, where it can 
be observed that the load-displacement relation during 
crack propagation is independent on the strength used. 
 



 
Figure 5. Load displacement curve obtained for 

different interface strengths in a MMB test with 50% of 
mode II. 

 
From Figure 5 is also observed that the computed 
energy dissipation during delamination grow is 
independent of the interlaminar shear strength.  
 

4.  CONCLUSIONS 

 
The cohesive element formulation previously developed 
by the authors has been reformulated to get accurate 
predictions under mixed-mode loading. The formulation 
has been modified by introducing mode-dependent 
penalty stiffness and redefining the activation function, 
the damage evolution law, and the equivalent mixed-
mode norms of the displacement jump. It has 
demonstrated that exist a relation between the pure 
mode interface stiffness and the cohesive properties 
(pure mode Fracture Toughness and pure mode interface 
strengths). The accuracy of the new model has been 
demonstrated by simulating delamination under different 
mixed-mode loading conditions. It has shown that the 
computed energy dissipation under delamination 
propagation is independent of the interface strengths 
selected. 
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