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ABSTRACT

We analize the steady propagation of a straight interfacial crack between two dissimilar planar quasicrystals in pure
elastic setting and infinitesimal deformation regime. A closed form solution to the balance equations is furnished. Inertia
is attributed only to the macroscopic motion.
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1 INTRODUCTION AND STATEMENT OF THE
PROBLEM UNDER SCRUTINY

We analyze the steady propagation of a crack located at
the interface between two dissimilar planar quasicrystals.
The equilibrium conditions for an analogous crack be-
tween a quasi-crystalline alloy and a standard linear elas-
tic material is also viewed in a sense as a limiting case.
The formal statement of the problem under scrutiny re-
quires preliminary notions sketched in the ensuing sec-
tion.

1.1 Nature of quasicrystals

Electron diffraction experiments on Al − Mn−based
alloys reveal the presence of atomic aggregates having
point group symmetry which is inconsistent with lattice
translation. The observation has been presented first in
1984 [12]. Six fivefold, ten threefold, and fifteen twofold
axes characterizing icosahedral symmetry are displayed
by diffraction patterns [12]. Essentially atomic clusters
with pentagonal symmetry in the plane and icosahedral
symmetry in the three-dimensional ambient space appear
(Figure 1 furnishes a schematic picture). These symme-
tries are forbidden by the standard classification of crys-
tallographic groups. A x-ray diffraction pattern obtained
from the icosahedral phase could not be indexed to any
Bravais lattice [12, 11, 4]. The basic reason is that the
three-dimensional ambient space cannot be covered by
using icosahedra only – the plane cannot be covered only
by a tessellation of pentagons – a result known in elemen-
tary geometry.

To fill the space by means of icosahedra with atoms lo-
cated at the vertices (alternatively the plane by means of
pentagons), in fact, the insertion of topological alterations
is necessary. Such alterations are due to clusters of atoms
with different point group symmetry. Their formation
is favoured or obstructed by the local energy landscape
which can be altered by deformation induced by the in-
teraction with the external environment.

The resulting atomic lattice is intrinsically quasi-
periodic. Quasi-periodicity is determined by local rear-
rangements due to jumps of atoms between neighboring

Figure 1: Cluster of atoms with icosahedral symmetry.



places and/or collective atomic modes generated for ex-
ample by the flipping of crisscrossing alterations needed
to maintain matching rules [2, 3, 1].

1.2 Modeling quasicrystals at continuum level

Local rearrangements of the atomic clusters do not have
specific location. “Even if a quasicrystal is energetically
stabilized representing a ground state, it was shown nu-
merically that above some critical temperature the system
is in a random-tiling-like phase or unlocked phase”[1].

If B is the region in the ambient space R3 occupied by a
quasi-crystalline body, for example in its reference place,
it is possible to assume that local atomic arrangements
assuring quasi-periodicity can occur at any point x in
B. If we assume that x is representative of a sub-cluster
of atoms – a material element in the common jargon of
continuum mechanics – the degrees of freedom exploited
in principle to generate topological alterations generat-
ing quasi-periodicity are additional to the ones associated
with x itself. The latter ones are, in fact, the translational
degrees of freedom of the cluster of atoms at x. Rotation
of that local sub-cluster are neglected. Only local rotation
between neighboring sub-clusters are accounted for. In
fact, the continuum modelling implies the decision of an
internal length characterizing material elements. In stan-
dard continuum mechanics such a length is not specified
because degrees of freedom inside the material element
are not considered. Also, here such an internal length is
not specified: we define only a vector field

x 7−→ ν (x) ∈ R̂3 (1)

over B, with R̂3 a copy of the ambient space R3 which
is distinct from it. The value ν (x) collects at each point
the inner degrees of freedom exploited to assure quasi-
periodicity of the atomic lattice. Commonly the field
x 7−→ ν (x) is called a phason field and is assumed to be
differentiable. The word ‘phason’ recalls that it describes
the potential local phase rearrangement of the atomic
clusters needed for assuring quasi-periodicity (Figure 2
indicates schematically possible rearrangements).

Figure 2: Sketch of rearrangements of an atomic cluster.

So, although quasi-periodicity is a global property in
quasicrystals, the representation in terms of phason field
[2, 3, 10, 5] constitutes an appropriate picture. In a sense,
it accounts at macroscopic level for the mechanism gen-
erating quasi-periodicity rather than the periodicity itself
that re-appears in the structure of the constitutive equa-
tions.

The point of view justifies the claim that the mechanics
of quasicrystals in long wavelength approximation – that
is the point of view of continuum mechanics – can be
viewed appropriately as a special paradigmatic offspring
of the general model-building of the mechanics of com-
plex materials [7]. The adjective ‘complex’ is attributed
to bodies characterized by a prominent influence of alter-
ations in the material texture on the macroscopic mechan-
ical behavior [6]. Such an influence is exerted through
actions that can be hardly portrayed in terms of standard
stresses. In fact, they require descriptions in terms of en-
tities power-conjugated with the variations of appropriate
geometrical descriptors of the material microstructure. In
the case of quasicrystals, the descriptor of the microstruc-
ture (better of the microstructural effects) is the phason
field. Non-standard actions are associated with the varia-
tion of the phason field and its gradient: they are, respec-
tively, so-called self-actions and phason stresses. The for-
mer have purely dissipative nature and give rise to phason
diffusion [10, 5]. The latter can be purely conservative
[3, 2].

1.3 The problem tackled here

We consider a two-dimensional ambient space. A bi-
material planar body fills the space. Precisely, a qua-
sicrystal occupies half plane, the remaining half plane
contains a quasi-crystalline alloy with different mechan-
ical properties. The two materials are attached along a
planar coherent interface.

A semi-infinite crack is located at the interface. It is in-
dicated by C. Figure 3 describes the situation. A frame
of reference is chosen as in Figure 3. It is attached at the
crack tip.

Figure 3: A bi-quasi-crystalline body with an interfacial
straight crack.



In the analysis, phason diffusion in the bulk material is
neglected. The attention is focused only on the purely
elastic behavior in linearized setting. Dissipation can oc-
cur only at the tip of the crack when the crack opens fur-
ther.

The two-dimensional setting selected here allows the use
of Stroh formalism [14], a complex variable representa-
tion of balance equations in linear elasticity. We adapt it
to the mechanics of quasicrystal by following the path
used to describe the steady-state crack propagation of
straight cracks in bodies constituted by a single type of
quasicrystal [8]. When applied directly to the mechan-
ics of quasicrystals, the procedure based on the standard
Stroh formalism involves a degenerate eigenvalue prob-
lem, so appropriate modifications have to be considered
[8]. The bi-material nature of the body under scrutiny
here is accounted for by using an appropriate technique
[13]. We furnish a closed-form solution to the balance
equations for the body in Figure 3 when the margins of
the cracks are not loaded and the bulk actions are ne-
glected. Boundary conditions are prescribed at infinity
and along the interface, including the crack.

2 A SUMMARY OF THE MECHANICS OF
QUASICRYSTALS IN LONG WAVELENGTH
APPROXIMATION

The reference place B is considered as a regular set in the
ambient space. Macroscopic motions are described by
one-to-one, orientation preserving, differentiable maps

(x, t) 7−→ y := y (x, t) ∈ R3, (2)

with x ∈ B, t ∈ [0, d]. The displacement field u is then
defined by

(x, t) 7−→ u (x, t) = y (x, t)− x, (3)

withDu (x, t) its spatial derivative with respect to x. The
condition |Du| << 1 at any x and t, characterizes the
infinitesimal deformation setting.

In time, phason degrees of freedom are described by dif-
ferentiable maps

(x, t) 7−→ ν (x, t) ∈ R̂3. (4)

Interactions associated with the rates of changes of the
displacement fields are standard stresses σ (Cauchy stress
tensor) and body forces b. Interactions associated with
the rate of change of the microstructural phason activity
are in this special case only a microstress S and a dissi-
pative self-action ζ.

Balance equations then read as follows:

divσ + b = ρü, (5)

divS = ζ, (6)

skw
(
σ + ν ⊗ ζ + STN

)
= 0, (7)

where ρ is mass density. The nature and the derivation of
the balance equations from first principles has been dis-
cussed in previous works [5, 7]. Some authors claim the
presence of phason inertia [2], other researchers exclude
it suggesting the sole diffusive role of phason modes [10].
Here, we do not consider neither phason inertia not pha-
son diffusion which has dissipative nature. Our analysis
is restricted only to pure elastic setting.

Constitutive issues are selected in the following way:

• The stress measures σ and S are purely conservative.
There exists an elastic energy density e (Du,Dν) such
that

σ =
∂e

∂Du
, S =

∂e

∂Dν
.

That e be independence of ν alone is suggested by ex-
perimental evidence [2, 3]. Independence of u is due
to invariance requirements with respect to changes in
observers.

• The self-action ζ is purely dissipative. So, since pha-
son diffusion is neglected, here we assume ζ = 0.

• In infinitesimal deformation setting, the elastic energy
e can be considered as a quadratic form of its entries,
namely

e (Du,Dν) =
1
2

(CDu) ·Du+

+
1
2

(KDν) ·Dν + (K′Dν) ·Du,

where C, K and K′ are fourth-rank constitutive tensors.
C is the standard elastic tensor, K′ describes the cou-
pling between gross deformation and phason activity,
K is peculiar of the phason degrees of freedom. Ap-
propriate explicit structures of the constitutive tensors
are given by [2]

Cijhk = λδijδkl + µ (δikδjl + δilδjk) ,
Kijkl = k1δikδjl + k2 (δijδkl − δilδjk) ,
K′ijkl = k3 (δi1 − δi2) (δijδkl − δikδjl + δilδjk)

where in the last equation no summation over repeated
indices is assumed. λ and µ are the standard Lamé con-
stants, k1 and k2 are associated with the pure phason
activity and k3 is the so-called coupling coefficient.

Once constitutive structures are substituted in the balance
equations, in the two-dimensional setting treated here, the
balance equations themselves can be written in matrix
form by listing the components of Du and Dv in vectors.
An eigenvalue problem then arises.



3 SOLUTION

In two-dimensional setting, set u := (u1, u2, v1, v2) and
t := (σ1j n̄j , σ2j n̄j ,S1j n̄j ,S2j n̄j), where n̄ is the nor-
mal to the interface. Attribute also an index k = 1, 2
to both u and t, with the convention that k = 1 refers
quantities to the half-plane occupied by the first type of
quasicrystal and k = 2 to the second one.

Solution in terms of uk and tk to the balance equations,
under the assumptions made here, are given by

uk,x = 2 Re [Ekgk] , tk = 2 Re [Hkgk] , (8)

where no summation over repeated indices is understood
from now on, and gk can be expressed in terms of a vector
function hk as

gk (zk) = hk (zk)− i

2
z̄kNh′k (zk) (9)

where N a nilpotent 4 × 4 matrix with N43 = 1 and 0 in
all other entries. Define

fk (zk) = hk (zk)− i

2
zkNh′k (zk) . (10)

For x ∈ R, we get gk (x) = fk (x) and also

tk (x) = Hkfk (x) + H̄kf̄k (x) . (11)

Boundary conditions along the interface read as follows:

u1,x (x) = u2,x (x) , t1 (x) = t2 (x) , x /∈ C, (12)

t1 (x) = t2 (x) = 0, x ∈ C. (13)

Moreover, it is also imposed that gk (zk) → 0 as
|zk| → ∞. The continuity of normal standard and pha-
son stresses along the interface, namely t1 (x) = t2 (x)
for any x, yields [13] the identity H1f1 (z) = H̄2f̄2 (z)
in the half-plane with positive y, z a complex variable.
As a consequence, we get

f̄2 (x) = H̄−1
2 H1f1 (x) , (14)

f̄1 (x) = H̄−1
1 H2f2 (x) . (15)

The vector δ (x) := u1,x (x)− u2,x (x) takes the form

δ (x) = E1f1 (x) + Ē1f̄1 (x)−
−E2f2 (x)− Ē2f̄2 (x) , (16)

that is

δ (x) =
(
E1H

−1
1 − Ē2H̄

−1
2

)
H1f1 (x)−

−
(
E2H

−1
2 − Ē1H̄

−1
1

)
H2f2 (x) (17)

Define the matrix Yk := iEkH
−1
k and call Z the sum

Z := Y1 + Ȳ2 = i
(
E1H

−1
1 − Ē2H̄

−1
2

)
. (18)

Then, we can write

iδ (x) = ZH1f1 (x) + Z̄H2f2 (x) . (19)

Consider now the solution for Z = Z̄, that is for Z a real
matrix. In this case, consider

h (z) =
{
H1f1 (z) , if y > 0
H2f2 (z) , if y < 0 . (20)

The condition of vanishing standard and phason tractions
at the crack margins, namely t1 (x) = t2 (x) = 0 for
x ∈ C, implies

h (zk) =
1

2
√

2πzk
k, (21)

with k a vector collecting stress intensity factors: k =
{KI ,KII , TI , TII}, the first two entries are standard fac-
tors, the last two indicate phason factors. Moreover, in
terms of k, the energy release rate G is given by

G =
1
4
k · Zk. (22)

By taking into account that

fk (zk) = H−1
k h (zk) , (23)

then

hk (zk) =
i

2
zkNh′k (zk) +H−1

k h (zk) , (24)

so that

gk (zk) = H−1
k h (zk) +

i

2
(zk − z̄k) Nh′ (zk) , (25)

which completes the analysis.

• The two quasicrystals occupying the plane in Figure 3
have the same Mach numbers when they have the same
Lamé constants and the coupling coefficients are re-
lated by

κ
(1)
3 = κ

(2)
3

√√√√κ
(1)
1

κ
(2)
1

. (26)

In this case, z1 = z2.

• The analysis of the same situation with one of the half
spaces occupied by a simple linear elastic body can be
considered in a sense as a limiting case by imagining
to freeze the phason degrees of freedom. However, by
letting to zero arbitrarily one of the two κ3’s, we real-
ize that at least one row vanishes in a matrix that must
be inverted, with the consequent difficulty. Small per-
turbation techniques are then necessary.



Figure 4: Contours of normalized phonon and phason
stress fields for a semi-infinite rectilinear crack under re-
mote Mode I (Mode II) loading conditions, for λ(1) =
λ(2) = 85GPa, µ(1) = µ(2) = 65GPa, k(1)

1 = k
(2)
1 =

0.044GPa, k(1)
2 = k

(2)
2 = 0.0396GPa , χ(1) = 5 and

χ(2) = 0.1.

Details of the analyses summarized here can be found in a
forthcoming paper [9]. Figure 4 shows the portrait of the
solution for the data reported in the captions, data taked
from the thesis of C. Walz [15]. In the figure the crack
is located in the interval [−1, 0] along the horizontal axis.
Figure 5 indicates sensibility of the solution interms of
standard Cauchy stress with respect to the ratio

χ :=
k3

k1
, (27)

variation due to the circumstance that the constitutive
constants k1 and k2 can be determined with certain safety
for specific classes of quasicrystals while there is a degree
of uncertainty in the evaluation of the coupling coefficient
k3. The results in Figure 4 show the behaviour of the so-
lution when phason stresses tend to vanish in one of the
two quasicrystals.

Figure 5: Variation of normalized phonon tensile (shear)
stress along the interface ahead of the crack tip under re-
mote Mode I (Mode II) loading conditions.
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