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ABSTRACT 
 

This paper summarizes the results of fracture experiments carried out on ice necks at –18 ºC. The neck geometry is a 
meniscus. This shape is attained freezing water between a flat plate and a spherical probe which are moved apart during 
the tensile test. Two types of fracture are observed: adhesive fracture and cohesive fracture. Adhesive failure occurs by 
propagation of a crack between the sample and one of the parts which “attaches” the sample to the equipment. Cohesive 
failure takes place by propagation of an internal crack within the solidified water. Each fracture behaviour is 
characterised by a different fracture stress. In this work, we also try to estimate the Young’s modulus of ice. 
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1.  ICE MECHANICAL PROPERTIES 

 
Mechanical properties of ice are relevant to those 
natural and artificial environments in which liquid water 
and low temperatures can be found at the same time. 
Some illustrative examples of this are the breakup of 
glaciers and avalanche event prediction (Glaciology) or 
the icing of structures in cold climates (Civil, Naval and 
Aeronautical Engineering). In Food Science, this topic 
is of interest to the preservation of optimal consumption 
conditions of frozen foods: microstructural details 
(ripening of ice particles and formation and growth of 
ice–ice necks) affect the sensory properties which are 
eventually felt by consumers.  
 
These are some of the mechanical properties of ice:  
• Monocrystalline hexagonal Ih ice shows a moderate 

anisotropy with C11 = 13.7 GPa, C12 = 7.0 GPa, C13 
= 5.6 GPa, C33 = 14.7 GPa and C44 = 3.0 GPa (3–
axis coincides with the cIh direction) [1,2]. 

• For randomly–oriented ice polycrystals, values of 
Young’s modulus, E, between 9.0 and 9.5 GPa are 
reported, and Poisson’s ratio, ν, ranges from 0.3 to 
0.325 [1–5]. 

• The inelastic behaviour of ice is also markedly 
anisotropic. The critical resolved shear stress for 
non–basal slip is several times greater than that for 
basal slip [1–4]. This leads to the build–up of 
internal stresses at grain–size scale which can 
initiate cracks. Ice exhibits macroscopically ductile 
or brittle behaviour depending on the tolerance to 
these cracks [6]. 

• Tensile strength, σf, of polycrystalline ice ranges 
from 0.7 MPa to 3.1 MPa [5,6], between –20 ºC 
and –10 ºC, with the typical scatter associated to 
fracture measurements.  

• Ice fracture toughness, KIc, ranges from 50 kPa√m 
to 110 kPa√m [1,2,5,7,8]. 

 

In this work, we carry out tensile tests of ice samples at 
–18 ºC, in order to study the fracture behaviour of ice 
particles when they have joined and form a neck. As the 
implementation of such an experiment can be difficult 
[9], the chosen geometry is a meniscus of solidified 
water formed between the two parts of a tensile tester 
which are moved apart during the experiment. 
 
 
2.  EQUIPMENT AND PROCEDURE 
 
The fracture tests are performed in an Instron 4501 
tensile tester. It is provided with a load cell of 100 N 
and it can carry out the tests in either force or 
displacement control. 
 
The generation of ice necks and the experiments take 
place within a cold chamber which is kept at –18 ºC. 
The temperature control is also provided by Instron: an 
income flow of cold N2 gas to the chamber is 
established to reach the target temperature. However, 
the pump of gas is discontinuous (~10 s) and thus, the 
temperature control may not be very precise. 
 
In order to perform these experiments, a flat plate and a 
spherical probe of Ø5 mm are introduced into the cold 
chamber and clamped to the fixed part and to the 
crosshead, respectively. Then, we let these two parts 
freeze. Before generating the samples, an ice layer is 
grown on the spherical probe with the help of a pipette 
(Figure 1.a). Finally, the probes approach one another 
until they are 1 mm or 2 mm away. In that moment, load 
and displacement signals are set to zero. Next, a very 
small amount of water is placed between the probes 
with the help of a syringe (Figure 1.b). Only 5 mm3 or 
10 mm3 are enough to form a meniscus (Figure 1.c). 
 
Finally, the experiment can start and is carried out under 
displacement control. The test can be divided into two 
parts: the cooling step and the loading step. During 



cooling, the sample is kept at –18 ºC for 2 min and the 
crosshead does not move. During the loading step, the 
crosshead starts to move at a rate of 0.1 mm/min and the 
loading of the sample occurs. 
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Figure 1. (a) Preparation of the Ø5 mm spherical 
probe. (b) Generation of an ice neck between the 
probes. (c) Ice neck (meniscus) before tensile test. (d) 
Ice neck after fracture (cohesive failure). 
 
 
3.  RESULTS 
 
Although the (deliberate) loading of the sample takes 
place during the loading step, some of the samples 
broke during the cooling step. This can be understood if 
we recall that the liquid meniscus freezes during this 
step. Due to the displacement control of the equipment, 
the crosshead is impeded to move during cooling. 
Nevertheless, the meniscus contracts during its 
solidification. Therefore, a net tensile load is applied on 
the meniscus and that is registered by the equipment. 
Whether or not the load introduced during the cooling 
step is enough to break the neck depends on its 
production and solidification. If fracture does not take 
place during the first step of the experiments, then it 
occurs during the second part, as expected (Figure 1.d). 
 
Figure 2.a shows the load vs. time F – t curves of the 
menisci that broke during the cooling step. Figure 2.b 
shows the load vs. displacement F – ∆L curves of the 
necks that broke during the loading step.  
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Figure 2. (a) Load – time curves corresponding to necks 
broken during cooling. (b) Load – displacement curves 
corresponding to necks broken during loading. 
 
Apart from the classification of broken necks in terms 
of the moment of their actual fracture, they can also be 
classified in terms of the fracture type that they exhibit. 
A simple inspection permits classifying fracture into 
adhesive and cohesive. Adhesive failure corresponds to 
a crack appearing between ice and the spherical probe 
(Figure 3.a), whereas cohesive failure corresponds to a 
crack propagating through the ice (Figure 3.b).  
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Figure 3. Different types of fracture observed: (a) 
adhesive failure and (b) cohesive failure. 
 



Nevertheless, this new division is independent of the 
aforementioned one. This is: the two types of failure 
were observed both during cooling and during loading. 
 
From the F – ∆L curves (Figure 2.b), we can calculate 
the ice Young’s modulus and the value of fracture 
stress, σf, of both adhesive and cohesive failure. 
However, from the F – t curves (Figure 2.a), we can 
only calculate σf The obtained values of σf and E are 
summarized in the following sections. 
 
3.1. Fracture stress 
 
The first approach to obtain the fracture stress is simply 
to calculate the average stress in the neck, σave, i.e. the 
applied force, F, divided by the section, A, of the neck. 
However, this value must be corrected by a term, 
namely fcorr, in order to take into account the triaxiality 
contribution to σf, such that σf = fcorr·σave. This factor 
has been computed using Abaqus and considering 
different neck sizes, X, neck curvatures, ρ, and neck 
lengths, Lneck. The geometry employed in Abaqus to 
obtain this factor mimics the meniscus geometry, as 
shown in Figure 4. 
 

 
Figure 4. Geometry of the neck simulated in Abaqus for 
the estimation of the triaxiality correction factor, fcorr. 
 
Within the analyzed range of X/ρ, which contains the 
X/ρ values of the experiments, the correction factor can 
be fitted to  
 
fcorr = 1.33 + 0.18 ln(X/ρ) (1) 
 

 
Figure 5. Fracture stress, σf, associated to each neck. 
 

Figure 5 shows the fracture stress associated to these 
experiments. The colour/shape code indicates the 
moment and the type of failure. The mean fracture 
stresses are summarized in Table 1. 
 
Table 1. Mean values of fracture stress, σf, and Young’s 
modulus, E, of the observed failure types. 

 σf (MPa) E (MPa) 

Loading + Adhesive 0.3 ± 0.3 70 ± 50 

Loading + Cohesive 4 ± 2 200 ± 100 

Cooling + Adhesive 1 ± 1  

Cooling + Cohesive 4 ± 2  
 
We can observe that the ice necks showing cohesive 
failure yield a mean fracture stress of approximately 4 
MPa. The obtained value of σf is slightly higher than 
those reported in the literature (0.7 MPa – 3.1 MPa [5]). 
Nevertheless, the scatter associated to these results is 
high and, thus, the differences are not really relevant. 
 
In relation with adhesive failure, we can observe more 
differences between the ice samples broken during 
cooling and those broken during loading (on average, 1 
MPa vs. 0.3 MPa). In both cases, the scatter is high. The 
scatter is such that a possible result for σf is zero. That 
would mean that there is very small adhesion between 
the surfaces. This would indicate that more attention 
should have been paid during the surface preparation 
and the sample production. This could also have 
reduced the number of adhesive events. 
 
It is interesting to analyse these fracture stress results in 
terms of Weibull distribution [10]  
 
P(σf) = 1 – exp[–(σf / σf0)k] (2) 
 
where k is the shape parameter and σf0 is the scale 
parameter, which corresponds to the value for which the 
~63% of the measured fracture stresses is below σf0. For 
this purpose, all the results of adhesive failure and those 
of cohesive failure have been grouped in two different 
data sets, as shown in Figure 6. 
 

 
Figure 6. Weibull distribution of fracture stress, σf, 
associated to the observed fracture types. 
 



For adhesive fracture, we have obtained a shape 
parameter of 1.4 and a size parameter of 0.20 MPa. 
Nevertheless, the fit is not as good as for the cohesive 
fracture, for which the shape parameter increases up to 
4.3 and the size parameter is approximately 5.3 MPa. 
This is 25 times bigger than the value obtained for 
adhesive failure, a similar result if we consider the mean 
values of σf. This is in good agreement with the scatter 
shown in Table 1, which indicates that the estimates for 
the fracture stress for cohesive failure are more reliable 
than those for adhesive failure. Some authors [9,11] 
attribute this difference to the existence of a liquid–like 
layer between the surfaces. This layer, whose existence 
may be possible from a thermodynamical point of view, 
represents an easily separable zone. Thus, failure can 
proceed preferentially through that layer. However, the 
existence of this layer could not be demonstrated 
experimentally in these samples. Finally, the shape 
parameter value for cohesive failure obtained in this 
work is of the same order as the values reported in the 
literature, which range between 3 and 5 [5,8]. 
 
3.2. Young’s modulus 
 
If we now consider the deformation undergone by the 
ice necks during the cooling step, we can estimate the 
value of Young’s modulus, E. We have already 
mentioned that the geometry of the sample induces 
stress triaxiality during the tensile test. The axial stress 
is not uniform through the neck, nor is the axial strain. 
As a first approximation, we are going to calculate E as 
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where σ(0) is the average axial stress at the beginning 
of the loading step, calculated from the load at that 
particular instant, F(0), εave is the uniform axial strain 
and ∆L is the change in the “length” of the neck. The 
change of neck section during the tensile test is 
neglected. Figure 7 presents the values of Young’s 
modulus along the axial direction, obtained from these 
experiments. Obviously, no estimations for E can be 
obtained from the necks broken during the cooling step 
(ε = 0). Table 1 also summarizes the mean values of 
Young’s modulus for the different failure types.  
 

 
Figure 7. Young’s modulus, E, associated to each neck. 

 
For the adhesive failure, the average Young’s modulus 
is 70 MPa, whereas for the cohesive failure, it is 200 
MPa. There is a relevant scatter for this parameter, as 
shown in Figure 7. Besides, the difference in terms of E 
for the two fracture types is not as big as for σf. This is 
in line with what we expected, as the value of ice 
Young’s modulus should be independent of the nature 
of the fracture occurred. 
 
However, the values of this work are very far from the 
reported value for polycrystalline ice, namely 9.33 GPa 
[1,2,5]. This big difference may indicate that a certain 
ice softening process is taking place. It could simply be 
the inherent softness of just–solidified ice [5] or the 
aforementioned liquid–like layer surrounding ice 
particles. Both phenomena would yield a decrease of E 
in “fresh” ice with respect to “old” bulk ice. 
Nevertheless, the combination of temperature and time 
should avoid the effect of the liquid layer, if such effect 
exists.  
 
A comment should be made regarding the parameters 
appearing in Equation 3. Forces and neck geometry 
seem correct on the basis of the fracture stress values 
that we have obtained. However, there is some 
uncertainty in the neck elongation, ∆L. Just note that to 
get σave = 4 MPa with E = 10 GPa and Lneck = 1 mm, ∆L 
should be 400 nm, whereas the registered values are, at 
least, one order of magnitude bigger. Therefore, these 
values may not simply be the ice elongation, but a 
combination of the elongations of the neck and of some 
part of the machine of lower stiffness, Kmach (compared 
with ice; this is, Kmach < Kice). A schematic of the system 
is depicted in Figure 8.  
 

 
Figure 8. Schematic of the system proposed for 
explaining the “soft ice”. 
 
This configuration yields 
 
∆L = ∆Lice + ∆Lmach (4) 
 
where the (known) value of ∆L is decomposed into two 
terms, one corresponding to ice and another one 
corresponding to the softer part of the machine. On the 
other hand, while the stiffness of this softer part is 
unknown, the stiffness of ice can be calculated as Kice = 
EA/Lneck. As the springs depicted in Figure 8 are 
connected in series, the applied force is undergone by 
both springs. Assuming the applicability of Hooke’s 



law, together with Equation 4, we get 
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Therefore, if we plot ∆L/F vs. Lneck/A for our 
experiments, we can, in principle, obtain the compliance 
of the softer part of the machine, 1/Kmach, as Lneck/A 
tends to 0, and the “real” ice Young’s modulus, E, as 
the inverse of the slope of the linear fit given by 
Equation 5. Figure 9 shows the dependence of ∆L/F on 
Lneck/A, for the cohesive fractures during loading. 
 

 
Figure 9. ∆L/F vs. Lneck/A plot of the necks broken 
during the loading step showing cohesive fracture. The 
linear fit is shown, as well as the 95% confidence 
interval for the given linear fit [12].  
 
According to the results shown in Figure 9, the stiffness 
of the softer part of the machine would be Kmach ≈ 450 
kN/m and the value of E would be negative. However, 
the correlation coefficient of this linear fit is very poor 
(only 20%). This is: we can hardly say that a line fits 
our points. Anyway, if we consider the confidence 
interval of the fit, the value of Young’s modulus can be 
as small as ~1 GPa, which is still one order of 
magnitude smaller than the real elastic modulus of 
polycrystalline ice. Nevertheless, note that the 
experimental results are somewhat concentrated around 
0.3 mm–1 and 2 µm/N, but, at the same time, there are 
some values of up to 0.85 mm–1 and 4 µm/N. The 
calculation of the inverse of the slope of a new linear fit 
which drops out these extreme values would yield a 
much more accurate value of ~4 GPa, still lower than 
the reported values but now only two and a half times as 
small as those. 
 
 
4.  CONCLUSIONS 
 
The mechanical behaviour of ice necks has been studied 
through an equivalent configuration, namely a meniscus 
of solidified water.  
 
We have observed that fracture can occur prior to the 
loading of the samples, due to the contraction of water 
during solidification. Fracture can also take place 
during sample loading, as expected. 

 
Independently of when fracture happens, two types of 
failure have been identified. The first type is an 
adhesive failure, in which a crack propagates between 
the ice meniscus and one of the attaching surfaces. The 
fracture stress associated to this type of failure is 
between 0.3 MPa and 1 MPa. The second type of failure 
that we have identified is the cohesive failure. In this 
case, the crack propagates through the middle of the 
samples. The fracture stress associated to this fracture 
type is, on average, 4 MPa. The scatter associated to 
these measurements is rather big. Nevertheless, these 
values are similar to the values reported in the 
bibliography. Besides, adhesive fracture and cohesive 
fracture have yielded different results in terms of 
Weibull shape parameter (1.4 vs. 4.3). 
 
We have also tried to calculate the elastic modulus of 
ice from the necks broken during the loading step. The 
results are similar for adhesive failure and cohesive 
failure (75 MPa vs. 230 MPa, respectively). However, 
the obtained values of Young’s modulus are, at least, 
one order of magnitude smaller than those reported in 
the literature. This has been justified by the presence of 
a more compliant part in the experimental set–up.  
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